Theory and field amplification for SN 1006

Heinz Völk, MPI Kernphysik, Heidelberg

- `Simple' object (historical SN, Type Ia, uniform environment: B-Field, density)
- Very good synchrotron data (radio, X-rays), plus recent gamma observations (H.E.S.S.)
- Theoretical model: acc`n & gas dynamics, magnetic field amplification

XMM X-rays

suggest dipolar structure of non-thermal synchrotron emission

B-field structure dipolar?
Amplification?

VHE particle acceleration only over part of shock surface?

Non-spherical aspects of SNRs

Ion injection only for instantaneously quasi-parallel shocks Θ_{nB} « $\pi/2$ (Ellison et al. 1965; Malkov & HJV 1965)

Stochastic self-limitation of injection rate through nonlinear wave pro – duction: from $\eta_{II} \approx 10^{-2}$ to $\eta_{eff} \approx 10^{-4}$

Plus systematic reduction of ion injection. Strong wave production only locally in "polar" regions

Hadronic γ -ray emission dipolar for uniform external \underline{B}_1

Renormalization of spherically symmetric flux (from quasi-|| shock)

X-ray synchrotron emission also overall dipolar for uniform external B₁

Radial profiles has width 0.076° ± 0.014°, consistent with *H.E.S.S.* point spread function → compatible with a thin rim also in gamma rays. Expected hadronic gamma-ray profile narrower by a factor ~ 2 (Berezhko et al. 2002).

Also factor > 10 variation in synchrotron cut-off frequency in azimuth (Rothenflug et al. 2004) → Consistent with low, only MHD – compressed B - field and diffusion coefficient K > K_{Bohm} in equatorial regions.

[See Petruk et al. (2008) and Miceli et al. (2009) for a different view.]

H.E.S.S. differential photon spectrum:

Compatible with power law of coefficient $\Gamma = 2.36 \pm 0.1_{stat} \pm 0.2_{syst}$ in NE

VLA radio

More or less everywhere around circumference.

Smoother spatial structures than in X-rays

(Cassam-Chenaï et al. 2008)

Probably:

Electron injection everywhere

SN 1006

Chandra X-rays:

Spatial scale of filaments ~ 10⁻² R_{shock}

= synchrotron
loss length
downstream
of shock

⇒ B_d (locally)

Amplified by factor up to 10.

Only possible through nuclear component.

Comparison with nonlinear theoretical model:

- (i) Kinetic equation for CR distribution functions $f_i(p,r,t)$ and $f_e(p,r,t)$ in spherical symmetry + quasi-parallel shock, coupled with gas dynamics of thermal plasma through CR pressure and wave dissipation (gas heating). Requires full time-dependence (Berezhko et al. 1994, 1996; Berezhko & HJV 1997).
- (iii) Still $\kappa \approx \kappa_{Bohm}$ due to excessive wave excitation (McKenzie & HJV, 1982). (iii) B-field amplified to $B_0(t) = B_0(t_{sn}) \left(P_c(t) / P_c(t_{sn}) \right)^{1/2}$ in shock precursor by nonresonant CR instability (Bell 2004) plus resonant Alfvén wave instability (Lucek & Bell 2000; Pelletier et al. 2006). Assume strong wave dissipation $\kappa \approx c_A(B) \cdot \text{grad } P_c$ (e.g. Berezhko & Ellison 1999) due to internal shock formation (Bell 2004; Zirakashvili et al. 2008), for non-resonant / resonant modes.
- (iv) Simplifying assumption: $B(r,t) = B_0(t) \times \rho(r,t)/\rho_{\infty}$, uniform downstream $\equiv B_d(t)$.
- (v) `Renormalization' of nuclear particle distribution to exclude quasi-perpendicular shock regions by factor $f_{re} < 1$ (HJV et al. 2003). (vi) Theoretically poorly known/unknown: B_0 , proton injection rate η , electron:proton ratio K_{ep}
- ▶ Need observational input to determine these `theory parameters'.

In a nonlinear theory everything is connected to everything else!

Nevertheless, start description with `theory parameters' here:

Nuclear particle nonthermal pressure P_c modifies shock to precursor and subshock.

Subshock compression ratio determines spectral index $\alpha > 0.5$ of low-energy radio electrons.

→ Value of α and hardening of spectrum (Allen et al. 2008) determines ion injection rate.

Volume-integrated synchrotron spectrum:

- (i) Influenced at high frequencies
 v > v_{loss} by synchrotron cooling
 → flat-topped spectrum with
 cutoff at hard X-rays, quite
 sensitive to internal field B_d:
 v_{loss} S_v (v_{loss}) ∝ B_d-3/2
- (ii) Use latest Suzaku/Chandra measurements to optimize value of B_d (t_{sn})
- (iii) Finally, determination of electron: proton ratio K_{ep} from radio amplitude

New determination of B_d with *Chandra* and *Suzaku*:

X² - minimization

of fit of radio and X-ray spectrum for ϵ_{γ} < 2 keV, for different values of η and K_{ep}

Result:

For $B_0 = 30 \mu G$ one obtains

 $X^2 / dof = 1.3$

An increase $\Delta X^2 \approx 1$ of X^2 implies change of field strength by 10%

Gas dynamical evolution (for two values of explosion energy E_{sn} and therefore hydrogen number density N_H):

(i)
$$E_{sn} = 1.8 \times 10^{51} \text{ erg}$$

 $N_H = 0.05 \text{ cm}^{-3}$

(ii)
$$E_{sn} = 1.5 \times 10^{51} \text{ erg}$$

 $N_H = 0.035 \text{ cm}^{-3}$

 $E_{sn} \le 1.6 \times 10^{51}$ erg from SN explosion theory limits gas density from above

Fitted at $t = t_{sn}$ to observed values of R_s and V_s

H.E.S.S. flux requires very low gas density

Hadronic and IC flux about equal

"Pile-up" of IC spectrum due to synchrotron losses? (e.g. Drury et al. 1999)

Energy density dominated entirely by nuclear component, nonlinear modification

Problem: rather soft *H.E.S.S.* spectrum

Field amplification weaker at early times? Escape at early times?

K ≈ K_{Bohm} → upper limit

Need to be investigated

H.E.S.S. differential photon spectrum:

Compatible with power law of coefficient $\Gamma = 2.36 \pm 0.1_{stat} \pm 0.2_{syst}$ in NE

Conclusions:

Except for form of VHE gamma-ray spectrum excellent agreement with observations in SN 1006. In other cases, like RX J1713.7-3946, also spectral form consistent

Nonthermal energy density entirely dominated by nuclear particles. Gamma-ray flux can be mixed leptonic/hadronic in case of very low gas density, even for strong field amplification

Azimuthal X-ray / gamma-ray correlations in SN 1006 naturally explained by ion injection and magnetic field amplification only in quasi-paralell shock regions.

Theses and questions:

Time-dependent theory indispensible for explosion-type phenomena. Steady state models realistic? Are they physical?

B-field amplification and wave-particle interactions best described in a consistent semi-empirical theory, to be checked by future fully 3-dimensional particle-in-cell simulations (strong kinetic/MHD turbulence, local shock formation and dissipation).

END

Simple IC models for type la Supernovae

