#### Diffractive imaging in the presence of noise

Veit Elser Cornell

X-ray Science in the 21st Century KITP, Santa Barbara

#### Experiment as a noisy communication channel





data (diffraction pattern)

#### Experiment as a noisy communication channel





data (diffraction pattern)

transmitter

receiver

#### Experiment as a noisy communication channel

sample (nanoscale object)

experiment

noisy channel

(diffraction pattern)

data

transmitter



receiver



C.E. Shannon

H(s) = entropy of the sample



C.E. Shannon

H(s) = entropy of the sample

H(s|d) = conditional entropy ofthe sample given the data



C.E. Shannon

H(s) = entropy of the sample

H(s|d) = conditional entropy ofthe sample given the data



C.E. Shannon

$$I(s,d)$$
 = information capacity of the experiment  
=  $H(s)$  -  $H(s|d)$  (mutual information)

#### experimentalists:

increase the channel capacity

#### theorists:

decode the data



Franklin

## theorists: decode the data

experimentalists:



increase the channel capacity

Crick & Watson

## example: information in a Bragg peak



#### example: information in a Bragg peak



$$I(\mu) = (\mu + \frac{1}{2})\log_2(2\mu + 1) - \frac{\gamma\mu}{\log 2} - \frac{1}{2}\sum_{k=2}^{\infty} \frac{\log_2 k}{(1 + \frac{1}{2\mu})^k}$$

#### example: information in a Bragg peak



$$I(\mu) = (\mu + \frac{1}{2})\log_2(2\mu + 1) - \frac{\gamma\mu}{\log 2} - \frac{1}{2}\sum_{k=2}^{\infty} \frac{\log_2 k}{(1 + \frac{1}{2\mu})^k}$$



Elser & Eisebitt, NJP (2010)

decoding:
difference map algorithm with binary value constraint



LDPC decoding: Yedidia, Wang & Draper, Physics of Algorithms (2009)

#### diffractive imaging of magnetic domains



Loh, Eisebitt, Flewett & Elser (2010)





#### Fourier transform holography\* simulations



\* Eisebitt et al., Nature 432, 885-888 (2004)

- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm

- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm



- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm





- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm





#### reconstruction (decoding) algorithm



#### reconstruction (decoding) algorithm





# information measures for single particle imaging









particle orientations:  $R = \{\Omega_1, \Omega_2, ..., \Omega_N\}$  (unknown)

particle orientations:  $R = \{\Omega_1, \Omega_2, ..., \Omega_N\}$  (unknown)

3D intensity: W (to be determined)

particle orientations:  $R = \{\Omega_1, \Omega_2, ..., \Omega_N\}$  (unknown)

3D intensity: W (to be determined)

information capacity of experiment: I({W, R}, D)

particle orientations:  $R = \{\Omega_1, \Omega_2, ..., \Omega_N\}$  (unknown)

3D intensity: W (to be determined)

information capacity of experiment: I({W, R}, D)

but N  $\sim 10^6 - 10^7 \dots$ 

need more practical information measures

data from one hit: K

particle orientation in one hit:  $\Omega$ 

3D intensity: W

data from one hit: K

particle orientation in one hit:  $\Omega$ 

3D intensity: W

I(K,W) = information rate in experiment with unknown orientation

data from one hit: K

particle orientation in one hit:  $\Omega$ 

3D intensity: W

I(K,W) = information rate in experiment with unknown orientation

 $I(K,W)|_{\Omega}$  = information rate in experiment with known orientation

#### reduced information rate

$$r = \frac{I(K,W)}{I(K,W)|_{\Omega}} = \text{ratio of information rates}$$
 without/with orientation

V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

#### reduced information rate

$$r = \frac{I(K,W)}{I(K,W)|_{\Omega}} = \text{ratio of information rates}$$
 without/with orientation

$$r = \frac{I(K,W)}{I(K,W) + I(K,\Omega)|_{W}}$$

V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

#### reduced information rate

$$r = \frac{I(K,W)}{I(K,W)|_{\Omega}} = \text{ratio of information rates}$$
 without/with orientation

$$r = \frac{I(K,W)}{I(K,W) + I(K,\Omega)|_{W}}$$

$$r = 1/2 : \text{ information in one hit} = \text{information obtained about orientation}$$

V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

#### EMC algorithm convergence



Loh & Elser, Phys. Rev. E 80, 026705 (2009)



Thank you for your attention