Diffractive imaging in the presence of noise

Veit Elser
Cornell

X-ray Science in the $21^{\text {st }}$ Century
KITP, Santa Barbara

Experiment as a noisy communication channel

Experiment as a noisy communication channel

transmitter

receiver

Experiment as a noisy communication channel

`channel capacity' of experiments

C.E. Shannon

`channel capacity' of experiments

$H(s)=$ entropy of the sample

C.E. Shannon

`channel capacity' of experiments

$H(s)=$ entropy of the sample
$H(s \mid d)=$ conditional entropy of the sample given the data

C.E. Shannon

`channel capacity' of experiments

$H(s)=$ entropy of the sample
$H(s \mid d)=$ conditional entropy of the sample given the data

C.E. Shannon
$I(s, d)=$ information capacity of the experiment

$$
=\mathrm{H}(\mathrm{~s})-\mathrm{H}(\mathrm{~s} \mid \mathrm{d})
$$

(mutual information)

experimentalists:

 increase the channel capacitytheorists:
decode the data

Franklin

theorists:

 decode the data

Crick \& Watson

example: information in a Bragg peak

example: information in a Bragg peak

$$
I(\mu)=\left(\mu+\frac{1}{2}\right) \log _{2}(2 \mu+1)-\frac{\gamma \mu}{\log 2}-\frac{1}{2} \sum_{k=2}^{\infty} \frac{\log _{2} k}{\left(1+\frac{1}{2 \mu}\right)^{k}}
$$

example: information in a Bragg peak

$$
I(\mu)=\left(\mu+\frac{1}{2}\right) \log _{2}(2 \mu+1)-\frac{\gamma \mu}{\log 2}-\frac{1}{2} \sum_{k=2}^{\infty} \frac{\log _{2} k}{\left(1+\frac{1}{2 \mu}\right)^{k}}
$$

decoding:
difference map algorithm with binary value constraint

Elser \& Eisebitt, NJP (2010)

LDPC decoding: Yedidia, Wang \& Draper, Physics of Algorithms (2009)

diffractive imaging of magnetic domains

Loh, Eisebitt, Flewett \& Elser (2010)

Fourier transform holography* simulations

* Eisebitt et al., Nature 432, 885-888 (2004)
decoding tricks:
- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm

decoding tricks:

- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm

decoding tricks:

- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm

decoding tricks:

- histogram constraint on contrast
- speckle-filter intensity
- error-stabilized algorithm

reconstruction (decoding) algorithm

reconstruction (decoding) algorithm

information measures for single particle imaging

> | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

diffraction data: $D=\left\{K_{1}, K_{2}, \ldots, K_{N}\right\} \quad(N$ hits)

diffraction data: $\mathrm{D}=\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{N}}\right\} \quad$ (N hits)

particle orientations: $R=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N}\right\}$ (unknown)

diffraction data: $\mathrm{D}=\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{N}}\right\} \quad$ (N hits)

particle orientations: $R=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N}\right\}$ (unknown)

3D intensity: W (to be determined)
diffraction data: $\mathrm{D}=\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{N}}\right\} \quad(\mathrm{N}$ hits)
particle orientations: $R=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N}\right\}$ (unknown)

3D intensity: W (to be determined)
information capacity of experiment: I(\{W, R\}, D)
diffraction data: $\mathrm{D}=\left\{\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots, \mathrm{~K}_{\mathrm{N}}\right\} \quad(\mathrm{N}$ hits)
particle orientations: $R=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{N}\right\}$ (unknown)

3D intensity: W (to be determined)
information capacity of experiment: I(\{W, R\}, D)

$$
\begin{aligned}
& \text { but } \mathrm{N} \sim 10^{6}-10^{7} \ldots \\
& \quad \text { need more practical information measures }
\end{aligned}
$$

data from one hit: K

particle orientation in one hit: Ω
3D intensity: W

data from one hit: K

particle orientation in one hit: Ω
3D intensity: W

$I(K, W)=$ information rate in experiment with unknown orientation

data from one hit: K

particle orientation in one hit: Ω
3D intensity: W

$I(K, W)=$ information rate in experiment with unknown orientation

$\left.I(K, W)\right|_{\Omega}=$ information rate in experiment with known orientation

reduced information rate

$$
r=\frac{I(K, W)}{\left.I(K, W)\right|_{\Omega}}=\begin{aligned}
& \text { ratio of information rates } \\
& \text { without/with orientation }
\end{aligned}
$$

V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

reduced information rate

$$
r=\frac{I(K, W)}{\left.I(K, W)\right|_{\Omega}}=\begin{aligned}
& \text { ratio of information rates } \\
& \text { without } / \text { with orientation }
\end{aligned}
$$

$$
r=\frac{I(K, W)}{I(K, W)+I(K, \Omega) \mid W}
$$

V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

reduced information rate

$r=\frac{\mathrm{I}(\mathrm{K}, \mathrm{W})}{\left.\mathrm{I}(\mathrm{K}, \mathrm{W})\right|_{\Omega}}=\begin{array}{r}\text { ratio of information rates } \\ \text { without/with orientation }\end{array}$
$r=\frac{I(K, W)}{I(K, W)+\left.I(K, \Omega)\right|_{W}}$
$r=1 / 2: \quad$ information in one hit $=$
information obtained about orientation
V. Elser, IEEE Trans. Information Theory 55, 4715-22 (2009)

EMC algorithm convergence

Loh \& Elser, Phys. Rev. E 80, 026705 (2009)

Thank you for your attention

