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“X-Ray Probing of Atomic and Molecular Dynamics
In the Attosecond Limit”

BERKELEY LAB

Produce high order harmonics (soft x-rays) and use them
for ultrafast time-resolved femtosecond dynamics
experiments and attosecond dynamics - Electron Dynamics
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XUV absorption spectroscopy:
probe of local electronic structure
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Probe of oxidation states and chemical bonding




Transient Absorption T
Spectrum of Methyl lodide .-/
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Transient Absorption
Methyl lodide
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Wave packet in C-l bond of methyl iodide formed by high
field 1onization and probed via core level transitions!

4.5 0.1800
0.1162
53.0 0.05250
-0.01125
51.6 -0.07500
S Probing |
> 502 atom in CH,l
3
5
- 48.9 - 1
g =553 cm
T 476 guantum
beat
o Explosion
3
H,I3*

453
-30 -10 10 30 50 70 0 120

Time delay (fs)



Lochfrass Electronic Ground State
Wave Packet
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Sub-cycle-resolved strong-field ionization
- collaboration with Ferenc Krausz’ group

Direct observation of tunneling on the sub-cycle timescale:
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Temporal response is a direct measure of non-
adiabaticity in optical strong-field ionization.




In Krausz’ Lab
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See Nature, August 5, 2010



Counts (arb. units)

Strong-field ionization of Kr observed
by high-order harmonic absorption
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Quantum state-resolved probing of Kr*
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How does strong-field ionization of Kr% with a few-cycle
pulse (4 fs) differ from that with a many-cycle pulse (50 fs)?




Violation of uncertainty principle?

Does spectrally-dispersed transient absorption spectroscopy
with attosecond time resolution violate the uncertainty principle?

puml probcl M P, (t)
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* Time resolution Atl determined by pump-probe cross-correlation

« Spectral resolution AE2 determined by spectrometer
configuration

AE2eAtl can take on any arbitrary

value!
Mathies & friends, J. Chem. Phys. 92, 4012 (1990); Annu. Rev. Phys. Chem. 43, 497 (1992).




But there Is a problem ...

1) Broadband probe pulse induces a polarization.

2) Electric field emitted by polarization is picked up by the detector.
When the pump pulse overlaps in time with the XUV probe-
Induced polarization:

ldeal case (local): In reality (nonlocal):
probe pump/ Ppr (t) probe | l pump/ F’pr (t)
» { > {

(note that: 7pr = 1/7¢)

Temporal nonlocality: XUV probe-induced polarization
samples the time-varying amplitude coefficients even
after XUV probe pulse has passed through the sample!

(R. Santra)



cross section [Mb]

Effect of temporal nonlocality

Example: Kr* resonances
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Formation of electronic coherence by
strong-field 1onization

Two open channels in the strong-field ionization of Kr:

2P1/2 (14.67 eV)
2P3/2 (14.00 eV)

Can strong-field ionization lead to the coherent
excitation of the Kr* 2P3/2 and 2P1/2 spin-orbit states?

Santra et al., Phys. Rev. A 74, 043403 (2006).



End result: possible real-time
observation of electron motion

Time-evolution of hole density after laser pulse:
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Absorbance




Theory

Experiment

Cross section (Mb)

Absorbance

Kr* region

Quantum beat wave packet
between spin orbit states

Energy shifts expected
based on interplay between
dispersion and absorption




Quantum state distribution: few-cycle vs.
many-cycle pulse

Quantum state | Many-cycle Few-cycle Time-Dep.
dist., o, (50 fs) U] (4 fs) Schrod. Eq.
calc.
P32 1/ 50+ 6 42 = 10 68
P32 312 66 23 + 8 6
P21/ 35+ 4 35+ 3 26
Degree of I g=0.67 = g=0.6
coherence 0.17
g =1 Is max

[1] L. Young et al., Phys. Rev. A 76, 043421 (2007).




Calculation: Transient population of
Kr® Rydberg states
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Laser field induces a transient population and
depopulation of the neutral Kr Rydberg states.
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Double Optical Gating (DOG) to Produce
Continuum Harmonic Spectra

Double optical gating =
Polarization gating + Two color gating

Gate
L)

Gate
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Ellipticity dependent pulse

H. Mashiko et. al., Phys. Rev. Lett. 100, 103906 (2008).



Optics for DOG

g- and o-pulse

1st QP 2nd QP BBO

H. Mashiko et al. Opt Lett, 34, 3337 (2009).



Photoelectron Spectrum from
Gate and Linear Pulses

Harmonics from Ar gas

Photoelectron from Ne gas (/,=21.6 eV)
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Photoelectron Streak Field & FROGCRAB
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Intensity (arb. u.)

Temporal and Spectral
Characterization
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The dream: Follow every feature of electronic
pathways in a complex molecule, through conical
Intersections, on attosecond timescales...




Towards ultrabroadband single-
photon coherent excitation

Metalloporphyrins frontier orbitals:
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How does electronic coherence influence photophysics?




Electronic coherences produced by
ultrabroadband single-photon excitation

Metalloporphyrins dimer and multichromophoric arrays:

/
/
/ /
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O =
__________ \\® 4
» Coherent excitation of
chromophores?

« Gating of photochemistry or
electron/energy transfer?

« Control of electron (de)localization?



Single-photon excitation @ 400 nm
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Individual intensity spikes can be used as pump pulse in
single-photon excitation, with 7, = 0.3 fs for each spike.




Single-photon excitation @ 400 nm

0.20 |- r=1fs !
i 7=0.5fs \
o oilor r=0.1fs |
2 ! .
- 012} :
E | 1
@
— 0.08
@ I
= i :
o 0.04 - !
6 O ———
) | 2 | ) ] )
-10 -5 0 5 10
Time (fs)

Decay lifetimes from sub-fs dynamics can be retrieved from
shift in maximum from time-zero and modulation amplitude.




Methods to measure attosecond processes
Harmonic generation by electron recollision - Corkum
Streaking — determining the birth of an electron - Krausz

Tunnel ionization - Krausz

Field manipulation of ion channels— Neumark/Leone

Transient absorption — Leone/Krausz
Plasmon enhanced streaking — surfaces
Transient reflectivity — solid state and nano materials

Transient dispersion
Simulation gold particle
plasmon probing
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Electron withdrawal by the fluorines
slows Auger decay time - but in fact the
Auger decay time speeds up

Other processes e, energy

can occur such pansfer
as electrons from {/

fluorines fill hole C

Competition between normal intra-atomic
Auger decay and interatomic Coulombic decay

Buth, Santra, Cederbaum calculate that ICD contributes
substantially - - Fe(CO); how fast are the iron core level
transitions affected by UV excitation that moves electron
density from Fe to the antibonding orbital of CO?



Attosecond Photoelectron Spectroscopy:
C,, lOnization

Shakeoff and other
processes,

Auger decay with
tunneling ionization,
two electron
excitation and
tunneling itonization,
etc.



Electronic structure of coupled semiconductor nanorod
Wave packet dynamics

Electron density of CB and VB in Electron density of the first two CB
CdSe/CdS/CdSe coupled nanorod states in coupled nanorod
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CdSe/CdS/CdSe nanorod shows a strong < \M‘\
electronic coupling, with significant

Position

electron density in CdS region D. Milliron et al, Nature, 430, 190 (2004)



Nanocrystal core level time resolved investigations
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In nanomaterials, such as CdSe, CdSe/CdS, 7n0O,
nanocrystals and nanowires, core level transitions can probe

Cd 64 eV
Se 55 eV Probe at the element
7n 89 eV specific, chemical level

Thus the transfer of an electron charge to or from a
nanocrystal can be detected by the chemical changes in the
soft x-ray transitions — why it is sensitive: confinement of
charges in nanoparticles alters core level transition energies

The attosecond time domain will address important topics on
fundamentally new timescales:

Birth of an exciton (association of electron and hole)
Coherent superpositions of exciton states, multiple excitons
Initial dephasing of excitons

Exciton-Exciton interactions at high carrier densities

Elactraormn hala mlacrmia cddlvvmamitecs at avearn hirnhbhar dancitioc



Table-top, femtosecond XUV light sources based on high
harmonic generation are already used for transient
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