Attosecond Coherent X-ray Stimulated Raman (CXRS) Spectroscopy

Shaul Mukamel Daniel Healion Haitao Wang University of California, Irvine Kavli Institute August 2, 2010

Heterodyne-Detected

(Stimulated) Four Wave Mixing

directions:

$$\boldsymbol{k}_s = \pm \boldsymbol{k}_1 \pm \boldsymbol{k}_2 \pm \boldsymbol{k}_3$$

$$k_{I} = -k_{1} + k_{2} + k_{3}$$
$$k_{II} = k_{1} - k_{2} + k_{3}$$

$$k_{III} = k_1 + k_2 - k_3$$

Electric field treated classically...

Pulse envelope

phase between pulses

$$\boldsymbol{E}(\boldsymbol{r},\tau) = \sum_{j=1}^{4} \sum_{\boldsymbol{v}} E_{j\boldsymbol{v}}(\boldsymbol{\tau} - \overline{\boldsymbol{\tau}}_{j}) \exp[ik_{j}\boldsymbol{r} - i\overline{\boldsymbol{\omega}}_{j}(\boldsymbol{\tau} - \overline{\boldsymbol{\tau}}_{j}) - i\varphi_{j\boldsymbol{v}}(\boldsymbol{\tau} - \overline{\boldsymbol{\tau}}_{j})] + c.c.,$$
 pulse #

polarization

...induces a polarization in the material

2D NMR Spectroscopy

ANGEWANDTE

CHEMIE

Volume 31 · Number 7 July 1992 Pages 805-930

International Edition in English

Nuclear Magnetic Resonance Fourier Transform Spectroscopy (Nobel Lecture)**

By Richard R. Ernst*

The Nonlinear Response Functions

$$P(\mathbf{r},t) = P^{(1)}(\mathbf{r},t) + P^{(2)}(\mathbf{r},t) + P^{(3)}(\mathbf{r},t) + \dots$$

Nonlinear polarization

$$P^{(n)}(\mathbf{r},t) \equiv \langle \langle V | \rho^{(n)}(t) \rangle \rangle \equiv Tr[V \rho^{(n)}(t)]$$

$$P^{(n)}(\mathbf{r},t) = \int_0^\infty dt_n \int_0^\infty dt_{n-1} ... \int_0^\infty dt_1 S^{(n)}(t_n, t_{n-1}, ..., t_1)$$

$$\times E(\mathbf{r}, t - t_n) E(\mathbf{r}, t - t_n - t_{n-1}) ... E(\mathbf{r}, t - t_n - t_{n-1} ... - t_1),$$

$$S^{(3)}(t_3, t_2, t_1) = \left(\frac{i}{\hbar}\right)^3 \langle \langle V|\mathcal{G}(t_3)V\mathcal{G}(t_2)V\mathcal{G}(t_1)V|\rho(-\infty)\rangle \rangle$$

Two-dimensional correlation plots

Double Fourier transform:

$$S_{I}(\Omega_{1}, t_{2}, \Omega_{3}) = \int_{0}^{\infty} dt_{3} \int_{0}^{\infty} dt_{1} e^{i\Omega_{1}t_{1} + i\Omega_{3}t_{3}} S(t_{1}, t_{2}, t_{3})$$

$$S_{III}(t_{1}, \Omega_{2}, \Omega_{3}) = \int_{0}^{\infty} dt_{3} \int_{0}^{\infty} dt_{2} e^{i\Omega_{2}t_{2} + i\Omega_{3}t_{3}} S(t_{1}, t_{2}, t_{3})$$

- •Particularly useful for displaying structural information, in analogy with 2D NMR
- •Ultrafast (50 fs) time resolution
- •Probe intra- and intermolecular interactions
- •Spreading transitions in multiple dimensions
- •Lineshapes give environment fluctuations

The scheme of the four-wave-mixing experiment

- •The delay times between the pulses are the experiment parameters.
- •Fourier transformations of signals with respect to time delays generate multidimensional spectrograms.

Generic three-band model

Feynman diagrams

Simulated 2DXCS signal of para-aminophenol

k, and k,, of an uncoupled system

opposite signs

off diagonal peaks in photon echo cancel exactly

 \dots as does the k_{III} signal.

k_I and k_{III} of a coupled system

off-diagonal cross-peaks in $k_{\rm l}$ and a non-vanishing $k_{\rm lll}$ signal are signatures of core-hole coupling

Simulated 2DXCS signal of para-aminophenol

Simulated O1s/N1s 2DXCS cross peak of paraaminophenol

- In the para isomer, interactions between N1s and O1s core transitions are weak ⇒ cross peaks are weak despite the strong GSB and ESA components

Simulated O1s/N1s 2DXCS cross peak of orthoaminophenol

- In the ortho isomer, interactions between the N1s and O1s are stronger ⇒ different peak pattern with stronger cross peaks
 - -Unlike XANES, 2DXCS cross peaks are sensitive to the relative position of the O and N atoms

Left: Proposed four-wave mixing of ultrashort x-ray pulses resonant with the O-1s and N-1s levels; **Middle**: theoretically predicted two-dimensional spectra the lower of which exhibits the coupling of excitations on the oxygen with those of the nitrogen in para and ortho-aminophenol molecules at right [from S. Mukamel].

Coherent X-ray Stimulated Raman Spectroscopy (CXRS)

- Two well-separated pulses with Gaussian envelopes
- Each pulse interacts with the molecule twice, to create a valence electronic wave packet. No phase control is needed.
- Delay time between pulses (fs~ps) is not limited by corehole lifetime.

Schweigert, Mukamel; PRA, 76 0125041 (2007)

Harbola, Mukamel; PRB 79, 085108 (2009)

core-exicted

Hamiltonian

$$\hat{H}_{total} = \hat{H}_{mol} + \hat{H}_{int}$$

$$\hat{H}_{mol} = \sum_i \epsilon_i c_i^\dagger c_i + \tfrac{1}{2} \sum_{ijkl} V_{ijkl} c_i^\dagger c_j^\dagger c_l c_k$$
 orbital energies Coulomb scattering

$$V_{ijkl} = \int d\vec{r} \int d\vec{r}' \frac{\phi_i^*(\vec{r})\phi_j^*(\vec{r})\phi_k(\vec{r}')\phi_l(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

$$c_i^\intercal,\; c_i \longleftarrow$$
 Fermi operators

molecular orbitals

two X-ray pulses

$$\mathcal{E}\left(\vec{r},t\right) = \sum_{j=1,2} E_{j}\left(\vec{r},t\right) + E_{j}^{*}\left(\vec{r},t\right) \quad \text{pulse duration}$$
 with gaussian pulse envelopes central frequency
$$E_{j}(\vec{r},t) = \frac{1}{\sigma_{j}\sqrt{2\pi}}e^{-t^{2}/2\sigma_{j}^{2}}e^{i\vec{k}_{j}\cdot\vec{r}-i\omega_{j}t}$$
 wave vector

in the frequency domain:

$$\begin{split} E(\vec{r},\omega) &= \sum_{j=1,2} E_j^+(\vec{r},\omega) + E_j^-(\vec{r},\omega) \\ E_j^\pm(\vec{r},\omega) &= \frac{\sigma_j}{\sqrt{2\pi}} e^{-(\omega\pm\omega_j)^2\sigma_j^2/2} e^{\pm i\vec{k}_j\cdot\vec{r}} \end{split}$$

Closed-Time-Path Loop Diagrams

The stimulated Raman signal is a sum over two terms:

CXRS Signal: Doorway-Window Picture

A time-dependent overlap between valence electronic wavepackets

$$\begin{split} S_{SR}\left(\tau\right) &= \mathrm{Re} \sum_{f} W_{f}^{*} D_{f} e^{-i\omega_{fg}\tau - \gamma_{f}\tau} \\ &= \mathrm{Re} \left\langle W | D\left(\tau\right) \right\rangle \quad & \text{valence-excited} \\ &\text{state decay rate} \end{split}$$

$$|D\left(\tau\right)\rangle = \sum_f D_f e^{-i\omega_{fg}\tau - \gamma_f\tau}|f\rangle$$
 doorway and window wave packets expanded in many-body valence-excited states
$$|W\rangle = \sum_f W_f|f\rangle$$

CXRS Signal: Doorway and Window Wave Packets

Two difficulties calculating the SOS expressions

$$D_f = \sum_{e} \mu_{fe} \mu_{eg} \int \frac{d\omega}{2\pi} \frac{E_1^*(\omega) E_1(\omega - \omega_{fg})}{\omega - \omega_{fg} - \omega_e + i\gamma_e}$$

(1) Matrix elements evaluated between states with different core occupations

$$W_f = \operatorname{Im} \sum_{e'} \mu_{fe'} \mu_{e'g} \int \frac{d\omega}{2\pi} \frac{E_2^*(\omega) E_2(\omega - \omega_{fg})}{\omega - \omega_{fg} - \omega_{e'} + i\gamma_{e'}}$$
(2) Integration over

(2) Integration over electric field envelopes performed analytically

Spntaneous Resonant inelastic x ray scattering Kramers-Heisenberg Expression

$$S_{\text{RIXS}}(\omega_1, \omega_2) = \sum_{ac} |A_{ca}(\omega_1)|^2 \delta(\omega_1 - \omega_2 - \omega_{ca})$$

$$A_{ca}(\omega_1) = \sum_{e} \frac{B_{ce} B_{ea}}{\omega_1 - \omega_{ea} + i\Gamma_{ea}}$$

- \star ω_1 and ω_2 are the incoming and outgoing modes
- \star a and c are valence N electron ground and singly excited states
- \star B_{eq} and B_{ce} are matrix elements of dipole operator
- \star Γ is the inverse life time of the excited state wave packet

Computation of Core-Excited States

- Deep core electrons are weakly correlated with other electrons.
 Large energy separation between core orbital space and valence orbital space.
- Strong orbital relaxation upon core-electronic excitations.

 Koopmans' theorem does not apply.

Goals:

- Describe orbital relaxation.
- Describe different core-hole configurations: deep and shallow core-holes.
- Incorporate electron correlations, especially for shallow core-hole configurations.

Core-Excited States: Equivalent-Core Approximation (ECA)

ECA(Z+1) approximation: Mimics the creation of the core hole by incrementing the nuclear charge and adding a valence electron

Advantages:

- Number of electrons and nuclear configuration are standard input in existing electronic structure packages.
- Explicit treatment of core-hole is avoided.
- Double-core excitations are treated similarly.

References:

W. H. E. Schwarz and R. Buenker, Chem. Phys., 12:153 (1976)

Limitations:

- Inherently incorrect spin symmetry

 Modified ECA model by

 Cederbaum et al. JCP,116:8723

 (2002)
- Does not hold for shallow core holes

X-ray stimulated Raman spectroscopy of quinolinol (ECA)

All-x-ray resonant pump probe measurement

- pump prepares molecules either in ground/valence or core/core coherences
- core/core coherences decay rapidly $(T_e \approx 10 \text{ fs})$ due to the Auger ionization

 ω_1, k_1

pump

- only Raman-type, GSB terms contribute for $\tau > T_e$ $\omega_{2} k_2$

Stimulated Raman signal

X-ray stimulated Raman spectroscopy of quinolinol

-Peaks in the Fourier transform correspond to the energies of valence excited states contributing to the pump-induced wavepacket

Core-Excited States: Static-Exchange (STEX) Approximation

Step 1: Optimize ground state of the neutral molecule at Hartree-Fock (HF) level.

$$|\Psi^N_{ref}
angle_0$$
 with energy E^N_0

For valence-excited states using configuration interaction singles (CIS) wave function using HF orbitals. (Not a good approximation for core-excited states)

$$|\Psi_{i\to a}^N\rangle = \sum_{ia} C_i^a c_a^{\dagger} c_i |\Psi_{ref}^N\rangle_0$$

Step 2: Instead, for core-excited state, create ionized state with an electron ejected from a specific core orbital.

$$|\Psi^{N-1}_{n_\sigma}\rangle_0 = c_{n_\sigma} |\Psi^N_{ref}\rangle_0$$
 core orbita

References:

H. Ågren, Theor. Chem. Acc, 97:14 (1997)

W. Hunt and W. Goddard, CPL, 3:414 (1969)

Core-Excited States: Static-Exchange (STEX) Approximation

Step 3: Optimize occupied orbitals of the target ionized state with occupation number fixed.

$$|\Psi^{N-1}_{n_\sigma}\rangle_0 \longrightarrow |\Psi^{N-1}_{n_\sigma}\rangle_{rel} \,$$
 with energy E^{N-1}_n

Step 4: Optimize unoccupied orbitals by the static-exchange Hamiltonian holding occupied orbitals fixed.

$$\hat{F}_n^{STEX} = \hat{F} - \hat{J}_n + 2\hat{K}_n$$

$$\hat{F}_n^{STEX} \psi_a = \varepsilon_a \psi_a$$
 excited orbital

Step 5: Add an electron to one of the optimized unoccupied orbitals, and construct the final core-excited state as an anti-symmetrized product of the target ionized state and the excited orbital.

$$|\Psi_{n\to a}^{N}\rangle_{rel} = \frac{1}{\sqrt{2}} \left(c_{a_{\alpha}}^{\dagger} |\Psi_{n_{\alpha}}^{N-1}\rangle_{rel} + c_{a_{\beta}}^{\dagger} |\Psi_{n_{\beta}}^{N-1}\rangle_{rel} \right)$$

Core-Excited States: Static-Exchange (STEX) Approximation

Step 6: Excitation energy of core-excited state:

Advantages:

- Correct spin symmetry (singlet -> singlet)
- Occupied and unoccupied orbital relaxation
- Can describe different core-hole configurations
- Electron correlation effects can be incorporated by using more accurate wave functions (e.g. CISD ...)

Application to Glycine

 Geometry optimized at B3LYP/6-311G** level.

Spectroscopy

- Energies and transition dipole moments calculated with 6-311G** basis set.
- Valence-excited states described at CIS level. In molecular orbital basis:

$$\begin{cases} |D\left(\tau\right)\rangle = \sum\limits_{f} D_{f}e^{-i\omega_{fg}\tau - \gamma_{f}\tau}|f\rangle \\ |W\rangle = \sum\limits_{f} W_{f}|f\rangle \\ |D(\tau)\rangle = \sum\limits_{f,ia} e^{-i\omega_{fg}\tau - \gamma_{f}\tau}D_{f;ia}c_{a}^{\dagger}c_{i}|g\rangle \\ |W\rangle = \sum\limits_{f,ia} W_{f;ia}c_{a}^{\dagger}c_{i}|g\rangle \\ |W\rangle = \sum\limits_{f,ia} W_{f;ia}c_{a}^{\dagger}c_{i}|g\rangle \\ |f\rangle = \sum\limits_{ia} C_{i}^{a}c_{a}^{\dagger}c_{i}|g\rangle \\ |D_{f;ia} = D_{f} \times C_{i}^{a} \end{cases}$$

Linewidth:

$$\gamma_N = 0.085 \text{eV}$$

$$\rightarrow \gamma_O = 0.10 \text{eV}$$

$$\gamma_f = 0.05 \text{eV}$$

Pulse duration:

$$\sigma_j = 77 as(1/\sigma_j \simeq 10 eV)$$

Simulation time:

$$\tau = 145.1 fs(6000 a.u.)$$

Time step:

XANES Spectra

STEX reports additional XANES peaks due to improved unoccupied orbitals.

$$S_{XANES}(\omega) = \frac{1}{\pi} \sum_{f} |\mu_{fg}| \frac{\gamma_f^2}{(\omega - \omega_{fg})^2 + \gamma_f^2}$$

CXRS Signal

$$|D(\tau)\rangle = \sum_{f,ia} e^{-i\omega_{fg}\tau - \gamma_f\tau} D_{f;ia} c_a^{\dagger} c_i |g\rangle |W\rangle = \sum_{f,ia} W_{f;ia} c_a^{\dagger} c_i |g\rangle$$

N1s doorway at time t=0 (i, a: relaxed orbitals)

	$\omega_{fg}(eV)$	$D_{f;ia}$	i	a
a	15.83	0.49	HOMO	LUMO+2
b	17.15	0.29	HOMO-2	LUMO
c	17.32	0.42	HOMO-1	LUMO+1
d	17.54	0.36	HOMO-2	LUMO+1
e	18.07	0.17	HOMO-2	LUMO+2
f	18.61	0.49	HOMO-2	LUMO+3
g	19.36	0.24	HOMO-2	LUMO+4
h	19.84	0.12	HOMO-2	LUMO+5

O1s window

	$\omega_{fg}(eV)$	$W_{f;ia}$	i	a
i	14.90	0.23	НОМО	LUMO
j	19.17	053	HOMO-3	LUMO
k	19.56	0.79	HOMO-3	LUMO+1
l	19.84	-0.15	HOMO-2	LUMO+5

Visualization of Electron Dynamics

Molecular orbital representation is good for assigning CXRS peaks. But to visualize the wave packet evolution, it requires to monitor all the particle-hole pairs that contribute to the signal.

$$|D(\tau)\rangle = \sum_{f,ia} e^{-i\omega_{fg}\tau - \gamma_f \tau} D_{f;ia} c_a^{\dagger} c_i |g\rangle$$

$$|W\rangle = \sum_{f,ia} W_{f;ia} c_a^{\dagger} c_i |g\rangle$$

In fact, there are no dominant particle-hole pairs that contribute to the signal in the molecular orbital basis. To visualize the electron dynamics, we choose natural transition orbital representation, which provides a more compact representation.

References:

E. Schmidt, Math. Ann., 63:433 (1907)

A. T. Amos and G. G. Hall, Proc. R. Soc. Lond. A, 263:483 (1961)

R. L. Martin, JCP, 118:4775 (2003)

the window matrix and the signal are also expanded in terms of these orbitals

$$S(\tau) = 2 \operatorname{Re} \operatorname{Tr} \left[\mathbf{W}^{\mathbf{T}} \mathbf{D}(\tau) \right]$$

=
$$2 \operatorname{Re} \operatorname{Tr} \left[\mathbf{W}^{\mathbf{T}} \mathbf{X}^{p}(\tau) \mathbf{X}^{p\dagger}(\tau) \mathbf{D} \mathbf{X}^{h}(\tau) \mathbf{X}^{h\dagger}(\tau) \right]$$

$$= 2 \operatorname{Re} \sum_{\xi} w_{\xi}(\tau) d_{\xi}(\tau)$$

where the time-dependent doorway and window natural orbital weights are defined as

$$w_{\xi}(\tau) = \sum_{ai} \chi_{\xi i}^h W_{ia}^* e^{-\omega_{ai}\tau} \chi_{a\xi}^p$$

$$d_{\xi}(\tau) = \sum_{i} \chi_{a\xi}^{p*} D_{ai} \chi_{\xi i}^{h*} e^{-\Gamma_{ai}\tau}$$

Signal is now expressed as a weighted sums of products, each representing the contribution of a single natural orbital

Signal decomposition by natural orbital pair

Pulse width: $\sigma_j = 77 \text{as} (1/\sigma_j \simeq 10 \text{eV})$

zooming in on the crossing...

for this system, the dominant contribution comes from the natural orbitals with the strongest doorway weights

Natural Orbitals at

$$\tau = 0$$

The strongest contribution is from the first two natural orbitals.

Selection rule: x-ray dipole is strong between s type core-orbitals, and valence orbitals with a strong projection onto the p-orbitals local to the resonant core.

both of the natural orbitals contributing strongly to the signal contain p-orbital character in their hole natural orbitals.

Spatial Representation of Natural Orbitals

The natural orbitals can be expanded in the atomic basis functions of the signal

$$\phi_{p,\xi}^*(r,\tau) = \sum_{a\alpha} \chi_{a\xi}^p C_{a\alpha} \phi_{\alpha}^*(r) e^{-i\varepsilon_a \tau}$$

$$\phi_{h,\xi}(r,\tau) = \sum_{i\beta} \chi_{\xi i}^h C_{i\beta}^* \phi_{\beta}(r) e^{i\varepsilon_i \tau}$$

Time-dependent Natural Orbitals

Time: 0as - 200as

Time-dependent Natural Orbitals

Manipulating Quantum
Entanglement of Quasiparticles
in Many-Electron Systems
by Attosecond X-ray Pulses

Shaul Mukamel and Haitao Wang

Department of Chemistry, University of California, Irvine

Entanglement: concurrence

Concurrence

Reduced density matrix:

$$\sigma_e = \operatorname{Tr}_h |\psi\rangle\langle\psi| = S^{\dagger}S \qquad \sigma_h = \operatorname{Tr}_e |\psi\rangle\langle\psi| = SS^{\dagger}$$

Schmidt representation diagonalizes both σ_e and σ_h simultaneously, sharing d non-zero eigenvalues λ_{ν} with $\nu=1,2,\cdots,d$.

$$\left|\psi(t)\right\rangle = \sum_{\nu=1}^{d} \sqrt{\lambda_{\nu}(t)} c_{\nu}^{\dagger} d_{\nu}^{\dagger} \left|g\right\rangle$$

Participation ratio R^{-1} with $R={\rm Tr}\sigma_e^2=\sum_{\nu}\lambda_{\nu}^2$ measures the number of electron-hole pairs participating in the wave packet.

Concurrence
$$C=\sqrt{2(1-R)}=\sqrt{\sum_{\nu<\nu'}\lambda_{\nu}\lambda_{\nu'}}$$
 is another measure of

entanglement commonly used in quantum information applications.

Simulation results: carbon monoxide (CO)

- Geometry optimized at B3LYP/6-311G** level.
- Excitation energies and transition dipole moments calculated with the minimal basis STO-3G basis set.
- ullet Line-width: $\Gamma_f=0.5eV$ and broadband width: $\sigma_1=20eV$

g' angle	$\omega_{g'g}$ (eV)	$ D_{g'} ^2$ (oxygen K-edge)	$ D_{g'} ^2$ (carbon K-edge)	$\frac{ D_{g'} ^2}{(\sigma_1 \to \pi^*)}$
$\overline{4}$	$\frac{(07)}{10.69}$	$\frac{\text{(o.03796)}}{0.03796}$	0.01182	$\frac{(01-\kappa)}{0.00905}$
5	10.69	0.06269	0.01953	0.01495
8	19.56	0.06073	0.37849	0.44332
11	31.68	0.68598	0.58300	0.11670
14	36.50	0.15025	0.00051	0.38921
15	55.53	0.00240	0.00665	0.02677

Table: The 6 major valence-excited state contributions to the valence wave packets prepared by the three core transitions used in the present simulations. The states are labeled in increasing order of energies (column 1).

Simulation results: carbon monoxide (CO)

For a given d, the concurrence has a maximum value of $C_{max} = \sqrt{2(1-1/d)}$

$$2 < d < 6$$

$$C_{max} = \begin{cases} 1.00 & d = 2\\ 1.29 & d = 6 \end{cases}$$

Multidimensional Attosecond Photoelectron Spectroscopy

Shaul Mukamel, Haitao Wang, Saar Rahav University of California, Irvine

Multidimensional Attosecond Photoelectron Spectroscopy

- Well-separated pulses
- Detection pulse interacts with the molecule once, ionizes the molecule, and generates a photoelectron.
- The signal is the number of photoelectron with kinetic energy $\mathcal{E}_{\mathbf{k}}$.

Photoelectron Signal in Frequency Domain

The signal is a square modulus of transition amplitude evaluated at the transition frequency.

$$\tilde{S}(\varepsilon) = \hbar^{-2} \int d\omega \, |T_{fg}(\omega)|^2 \, \rho_f(\varepsilon) \delta \, (\omega - \omega_{f,g})$$

$$= \hbar^{-2} \, |T_{fg}(\omega_{fg})|^2 \, \rho_f(\varepsilon)$$
where $\varepsilon_f^- + \varepsilon_- \varepsilon_g = \hbar \omega_{fg}$ transition energy internal energy kinetic energy of internal energy of energy of the right energy of t

of the ion state the photoelectron the neutral state

The transition amplitude can be expanded in powers of various pulses:

$$T_{fg}(\omega) = \int d\omega_1 E^d(\omega_1) \tilde{T}_{fg}^{(1)}(\omega_1) \delta(\omega - \omega_1)$$

$$+ (2\pi\hbar)^{-1} \int d\omega_1 d\omega_2 E^p(\omega_1) E^d(\omega_2) \tilde{T}_{fg}^{(2)}(\omega_2, \omega_1) \delta(\omega - \omega_1 - \omega_2)$$

$$+ (2\pi\hbar)^{-2} \int d\omega_1 d\omega_2 d\omega_3 E^p(\omega_1) E^p(\omega_2) E^d(\omega_3) \tilde{T}_{fg}^{(3)}(\omega_3, \omega_2, \omega_1) \delta(\omega - \omega_1 - \omega_2 - \omega_3) + \cdots$$