## The Need for an Open Quantum System Approach to Describe High-Intensity X-ray Interactions with Matter

#### August 3<sup>rd</sup>, 2010 Nina Rohringer (Lawrence Livermore National Laboratory)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-448504

Lawrence Livermore National Laboratory

## Non-linear optical physics in the X-ray regime



Linear effects (one-photon one-electron interactions):

- Coherent diffractive imaging
- Time-resolved photo-absorption spectroscopy (RIXS, XANES)
- Time-resolved photoelectron spectroscopy
- •Spectroscopy of highly-charged ions (EBIT)

#### Quantum optics transferred to the X-ray regime



#### Non-resonant versus resonant high-intensity x-ray matter interaction



#### Non-resonant interaction

- > 1<sup>st</sup> user experiment at LCLS on Neon
- Sequence of one-photon absorption events followed by Auger or radiative decay
- Model of kinetic rate equations valid



#### **Resonant interaction**

- Increased coupling strength on resonance
- Perturbation theory breaks down
- > Non-linear description necessary
- > Optical Bloch equations for a dissipative system



## Focusing LCLS into a gas sample of Neon Parameters: pulse of 100 fs, $10^{12}$ photons, $\omega$ =1.4 keV, focused to 2 µm



L

# An atomic inner-shell X-ray laser pumped with XFEL radiation based on Neon



## Small-gain parameters at 1 keV pumping energy (single atom calculcation) $I(z,t) = I(0,t) \cdot e^{g \cdot n \cdot z}$



#### **One-dimensional self-consistent gain calculation**

Upper lasing level:

$$\frac{dN_U(z,t)}{dt} = \sum_{-} \sigma_i^v j(\tilde{t}_z) N_i^S(\tilde{t}_z) + \sum_{-} \sigma_i^c j(\tilde{t}_z) N_i^S(\tilde{t}_z) 
- \sigma^{se} \left[ j_+^{XRL}(z,t) + j_-^{XRL}(z,t) \right] N_U(z,t) 
+ \sigma^{abs} \left[ j_+^{XRL}(z,t) + j_-^{XRL}(z,t) \right] N_L(z,t) 
- \left[ A_{U \to L} + p_U^A + (\sigma_U^v + \sigma_U^c) j(\tilde{t}_z) \right] N_U(z,t)$$

X-ray laser flux in forward and backward direction:

$$\frac{dj_{\pm}^{XRL}}{dt} = j_{\pm}^{XRL}(z,t)cn_A \left[\sigma^{se}N_U(z,t) - \sigma^{abs}N_L(z,t)\right] + \frac{\theta_{\pm}(z)}{4\pi}A_{U\to L}N_U(z,t)n_Ac \mp c\frac{dj_{\pm}^{XRL}}{dz}$$





n=4x10<sup>18</sup> cm<sup>-3</sup>, LCLS: 100 fs, 10<sup>12</sup> photons per pulse, focal diameter 2 µm

#### Saturation of more than one lasing line seems possible



Rohringer and London, Phys. Rev. A (2009).

**Option:Directorate/Department Additional Information** 

## XFEL: 2 μm focus, 5x10<sup>12</sup> photons per pulse, 100 fs pulse, 1keV energy gas density: 1x10<sup>19</sup> atoms/cm<sup>3</sup>





## Output at end of amplifying plasma column for 1 keV pump Pathway to multi-color x-ray fs pump-probe experiments



#### Scheduled experiment of XRL lasing scheme in Sept. 2010

#### Photo-ionization pumping scheme at different wavelengths



#### Non-linear optical physics in the X-ray regime



# Resonant Auger effect at high X-ray intensities, Ne 1s-3p transition, Wave-function approach



#### **Resonant Auger-electron spectrum gets broadened**



L

## Generalized Bloch equations for open quantum system Calculate time-dependent ionic density matrix



Loss of coherence, Open Quantum System, Unobserved photo elect

Froms 
$$\dot{\rho}_{11} = \left[ie^{-i\delta t}\rho_{21}\frac{R^*(t)}{2} + cc\right] + \sigma_1 j(t)p_0(t)$$
  
 $\dot{\rho}_{22} = -\Gamma_2 \rho_{22} + \left[ie^{i\delta t}\rho_{12}\frac{R(t)}{2} + cc\right]$   
 $\dot{\rho}_{12} = -\frac{\Gamma_2}{2}\rho_{12} + ie^{-i\delta t}(\rho_{22} - \rho_{11})\frac{R^*(t)}{2}$ 

#### Rohringer and Santra, work in progress



#### **Self-Stimulated Resonant Raman Scattering**



#### **Proposed experiment: Resonant pumping scheme**





#### **Proposal: Stochastic wave function approach**

#### Adopt stochastic wave-function approach from quantum optics

Ionic reduced density matrix sampled by ensemble of pure states Ionic wave function evolves deterministic (resonant interaction with XFEL) + random (stochastic) quantum jumps to simulate -photo ionization processes -Auger decay -eventually treat electron impact ionization, excitation, de-phasing Quantum jump approach: Jump operators: derived by semiclassical approximation ? Test on single-atom case by comparing to generalized optical Bloch equations (equivalent descriptions of determining ionic reduced density matrix)



#### **Acknowledgements**

- LLNL: Richard London James Dunn Felicie Albert Sebastien Le Pape Alexander Graf
- CSU: Jorge Rocca Duncan Ryan Mike Purvis
- SLAC: John Bozek Christoph Bostedt
- CFEL: Robin Santra

We acknowledge support of this project by LLNL's LDRD (Laboratory Directed Research and Development) program.

