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Measurement scheme of the asymmetry: two detectors along the

electric field: E(t)=e(t) cos( t+e ) or two-color field . - . long
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E(t)=¢c,(t)cos(ot+p)

By changing ¢ from 0 to = we change the

-cos(wmt) direction of photoemission

1 cycle =2.66 fs
for A= 800 nm



We show that Coulomb corrections to simple tunneling
Keldysh models are very significant for angular distributions of
photoelectrons in the case of few cycle pulse or in the case of
two-color pulses.

[t 1s convenient to analyze the effect via normalized
forward-backward asymmetries: a=(P+ - P- )/ (P+ + P-).

For long (more than 10 cycles) pulse the asymmetry coefficient
“a” 1s zero. The asymmetry appears when the pulse is very
short or when two-colors are used.

Our earlier studies:

“o+2 ®” case : PRA 63, 023409 (2001),
Carrier-Envelope effects: PRA 70, 013615 (2004),
PRA 71, 053815 (2005)
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Newton equation describing the electron
Motion after tunneling (along z-axis, A, || O-z)

dv 1 O A

dt ¢ ot oz

If we neglect the Coulomb potential:

V() =V, _‘X‘l(to)/c



We solve numerically the time-dependent Schrodinger equation:

Oy (r,0,1) 1 & 20
=——— + —— - — +[V.(r)+r A)E(t
= 2(&2 o T jvx [Ve () + 1 cos()E(t)]

Where V.(r)= ! for a hydrogen atom.
r

The electric field E(t) 1s defined via the vector potential A(t)
1 0

E(t)= - —a A(t)=&(t) cos(w (t-t,,) +@)+E_
C

with A(t)=-c &(t) sin(w (t-t,,) + @)/ @,

B = Lsin(e (tt,)+0) Y | 2(=E,, exp [— 21n2(t2'tM)2 ]
0] (.



Probabilties p,, P. 1n both detectors 1s obtained from the probability
flux j. calculated near the absorbing boundaries :

t; 0, t s
P.=2x j dt j do sin(@)r* j (6,1), P =2rx j dt j dé sin(@)r’ j (6,1),
0 0 0

where j (6,t)=Re[-iy (r,0,1) gw(r,ﬁ, t)] |,_, 1s the probability flux.
r- 0

0 < 6,=15°
=1 .
asymmetry coefficient:
P —P
a=

Absorbing zone



Gaussian Pulses 1,=3.9 fs (FWHM)
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asymmetry coefficient a
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asymmetry coefficient a
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asymmetry coefficient a
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Phase dependence of fast electron ATI spectra, I=6x10'3 W/cm?, t,=3.9 fs
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1. Few cycle pulses (t, <Z2cycles) lead to considerable
forward /backward asymmetries along the laser polarization
vector very sensitive to the carrier-envelope phase. Several

regimes of intensites and ranges of electron energy were
1dentified.

2. Asymmetry exhibits simple patterns in the intermediate
intensity
regime, between tunneling and multiphoton regime, y=1.

3. The asymmetry of slow electrons originates from the
Coulomb attraction on the returning electron from the core.



