Analysis and Optimal Control of Electron Dynamics

E. K. U. GROSS

Freie Universität Berlin

www: http://www.physik.fu-berlin.de/~ag-gross

OUTLINE

• **TD Electron Localization Function** (**TD-ELF**)

• Optimal control of static and timedependent targets

Tobias Burnus Miguel Marques Marko Erdmann Volker Engel

Jan Werschnik Ioana Serban

Time-Dependent Electron Localization Function (TD-ELF)

GOAL

Time-resolved visualization of the breaking and formation of chemical bonds.

How can one give a rigorous mathematical meaning to chemical concepts such as

- Single, double, triple bonds
- Lone pairs

- Density $\rho_{\sigma}(\mathbf{r})$ is not useful!
 - Orbitals are ambiguous (w.r.t. unitary transformations)

$$D_{\sigma}(\vec{r},\vec{r}') = \sum_{\sigma_{3}\sigma_{4}...\sigma_{N}} \int d^{3}r_{3}...\int d^{3}r_{N} |\Psi(\vec{r}\sigma,\vec{r}'\sigma,\vec{r}_{3}\sigma_{3}...,\vec{r}_{N}\sigma_{N})|^{2}$$

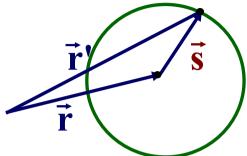
= diagonal of two-body density matrix

= probability of finding an electron with spin σ at \vec{r} and another electron with the same spin at \vec{r} '.

$$P_{\sigma}(\vec{r},\vec{r}') := \frac{D_{\sigma\sigma}(\vec{r},\vec{r}')}{\rho_{\sigma}(\vec{r})}$$

= conditional probability of finding an electron with spin σ at \vec{r} ' if we know with certainty that there is an electron with the <u>same</u> spin at \vec{r} .

Coordinate transformation



If we know there is an electron with spin σ at \vec{r} , then $P_{\sigma}(\vec{r}, \vec{r} + \vec{s})$ is the (conditional) probability of finding another electron at \vec{s} , where \vec{s} is measured from the reference point \vec{r} .

Spherical average
$$p_{\sigma}(\vec{r}, |\vec{s}|) = \frac{1}{4\pi} \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} d\phi P_{\sigma}(\vec{r}, |\vec{s}|, \theta, \phi)$$

If we know there is an electron with spin σ at \vec{r} , then $p_{\sigma}(\vec{r},s)$ is the conditional probability of finding another electron <u>at the distance</u> s from \vec{r} .

Expand in a Taylor series:

$$p_{\sigma}(\vec{r},s) = p_{\sigma}(\vec{r},0) + \frac{dp_{\sigma}(\vec{r},s)}{ds}\Big|_{s=0} \cdot s + \frac{1}{3}C_{\sigma}(\vec{r})s^{2}$$

The first two terms vanish.

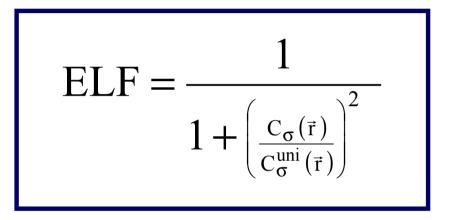
$C_{\sigma}(\vec{r})$ is a measure of electron localization.

Why? $C_{\sigma}(\vec{r})$, being the s²-coefficient, gives the probability of finding a second <u>like-spin</u> electron <u>very near</u> the reference electron. If this probability <u>very near</u> the reference electron is low then this reference electron must be very localized.

 $C_{\sigma}(\vec{r})$ small means strong localization at \vec{r}

 C_{σ} is always ≥ 0 (because p_{σ} is a probability) and $C_{\sigma}(\vec{r})$ is not bounded from above.

Define as a useful visualization of localization (Becke, Edgecombe, JCP <u>92</u>, 5397 (1990))



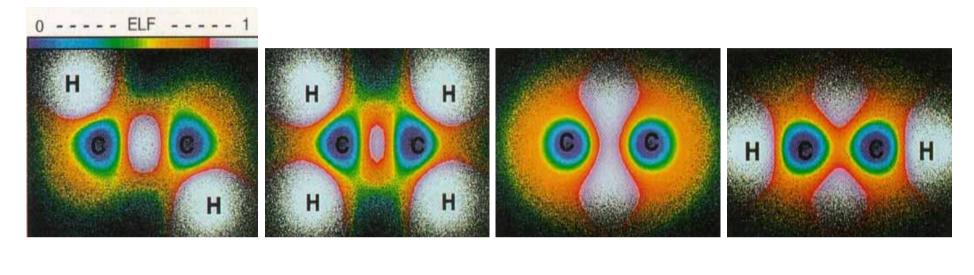
where

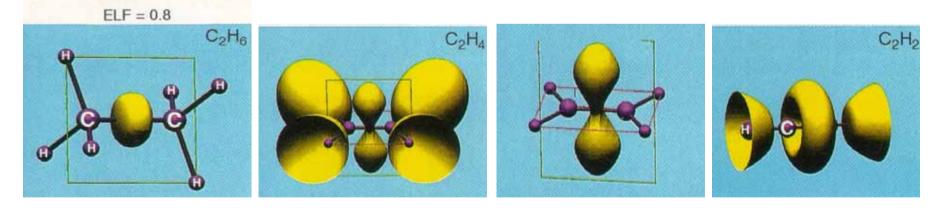
$$C_{\sigma}^{\text{uni}}(\vec{r}) = \frac{3}{5} (6\pi^2)^{2/3} \rho_{\sigma}^{5/3}(\vec{r}) = \tau_{\sigma}^{\text{uni}}(\vec{r})$$

is the kinetic energy density of the uniform gas.

Advantage: ELF is dimensionless and $0 \le ELF \le 1$

ELF





A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, *Angew. Chem. Int. Ed. Engl.* <u>36</u>, 1808 (1997)

For a determinantal wave function one obtains

in the static case:

$$C_{\sigma}^{det}(\vec{r}) = \sum_{i=1}^{N_{\sigma}} \left| \nabla \varphi_{i\sigma}(\vec{r}) \right|^{2} - \frac{1}{4} \frac{\left(\nabla \rho_{\sigma}(\vec{r}) \right)^{2}}{\rho_{\sigma}(\vec{r})}$$

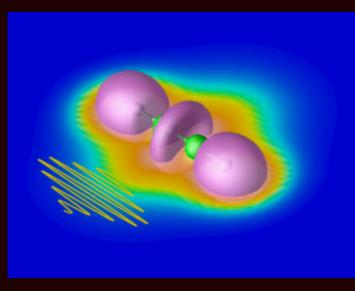
A.D. Becke, K.E. Edgecombe, J.Chem. Phys. <u>92</u>, 5397 (1990)

in the time-dependent case:

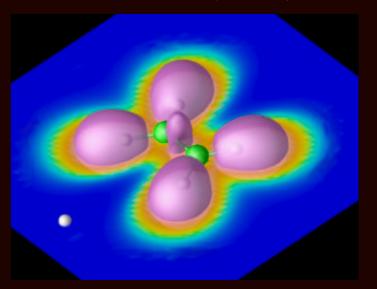
$$C_{\sigma}^{det}(\vec{r},t) = \sum_{i=1}^{N_{\sigma}} \left| \nabla \varphi_{i\sigma}(\vec{r},t) \right|^{2} - \frac{1}{4} \frac{\left(\nabla \rho_{\sigma}(\vec{r},t) \right)^{2}}{\rho_{\sigma}(\vec{r},t)} - \frac{j_{\sigma}(\vec{r},t)^{2}}{\rho_{\sigma}(\vec{r},t)}$$

T. Burnus, M. Marques, E.K.U.G., *Phys. Rev. A (Rapid Comm)* <u>71</u>, 010501 (2005)

Ethyne (acetylene) in a strong laser field

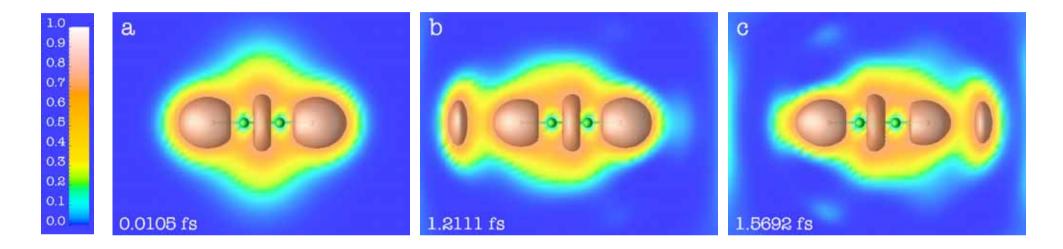


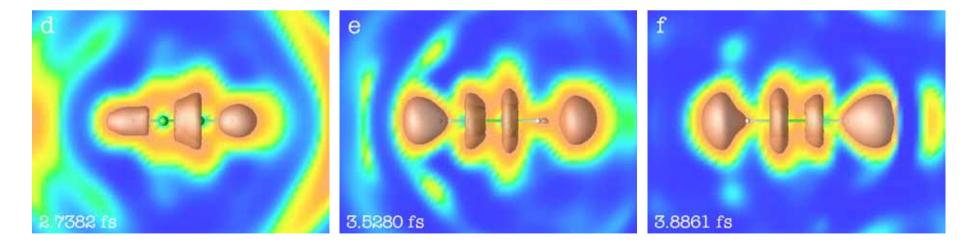
Scattering of a high energetic proton on ethene (ethylene)



TD-ELF Examples

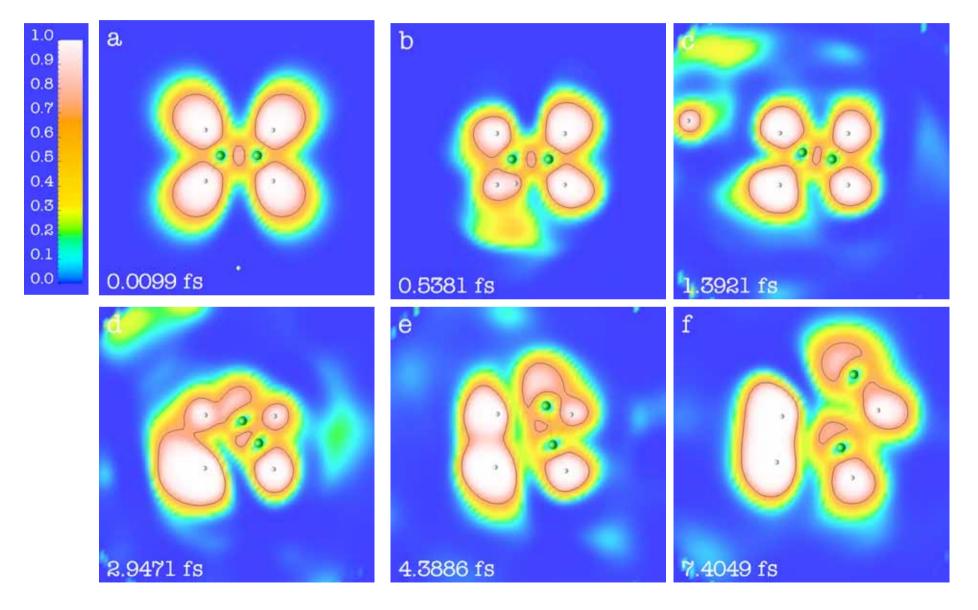
Ethyne (acetylene) in a strong laser field





TD-ELF Examples

Scattering of an energetic proton from ethene (ethylene)



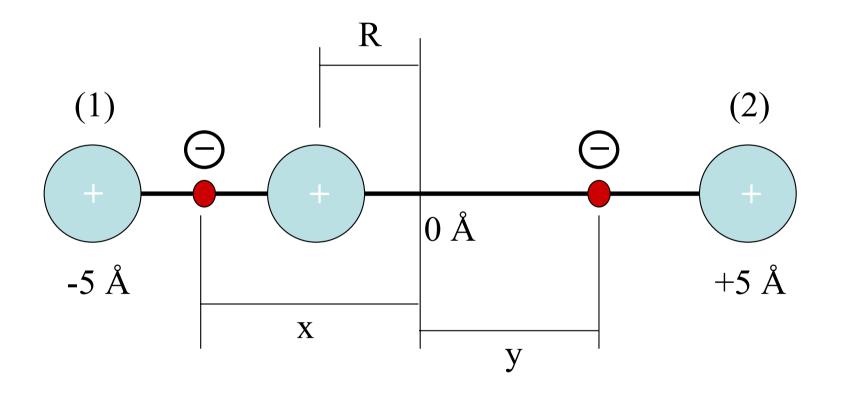
INFORMATION ACCESSIBLE THROUGH TDELF

How long does it take to break a bond in a laser field?

Which bond breaks first, which second, etc, in a collision process?

Are there intermediary (short-lived) bonds formed during a collision, which are not present any more in the collision products ?

MODEL

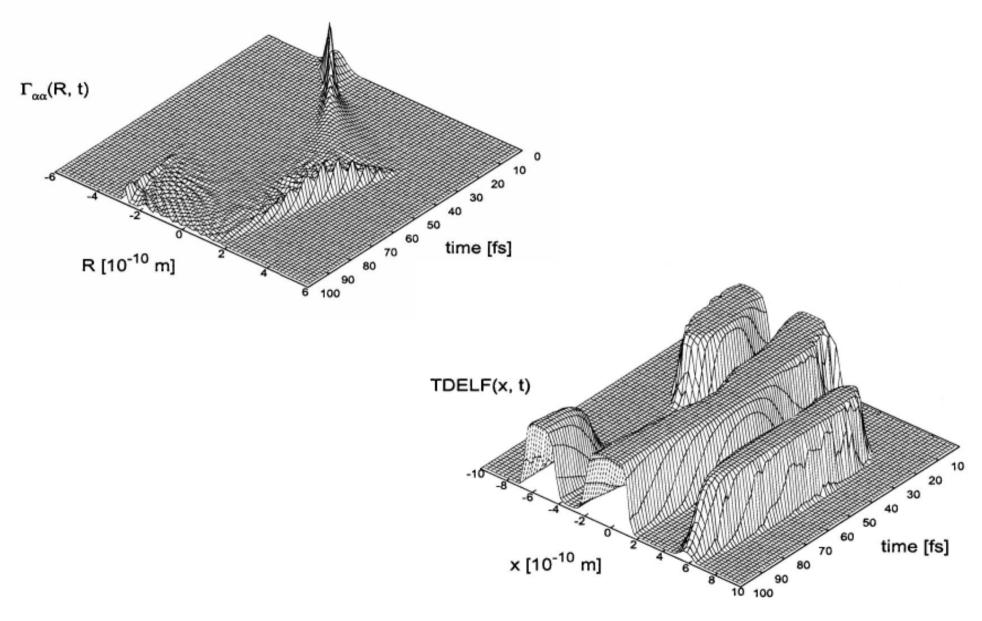


Nuclei (1) and (2) are heavy: Their positions are fixed

Anti-parallel spins Parallel spins 12 2 adiabatic potentials adiabatic potentials (αβ) (αα) n=3 9 9 E [eV] n=3 n=2 6 6 n=1 n=2 n=1 n=0 n=0 3 ∟ −5 3 5 –5 -2.5 0 R [10⁻¹⁰m] 2.5 0 R [10⁻¹⁰ m] 2.5 -2.5 5

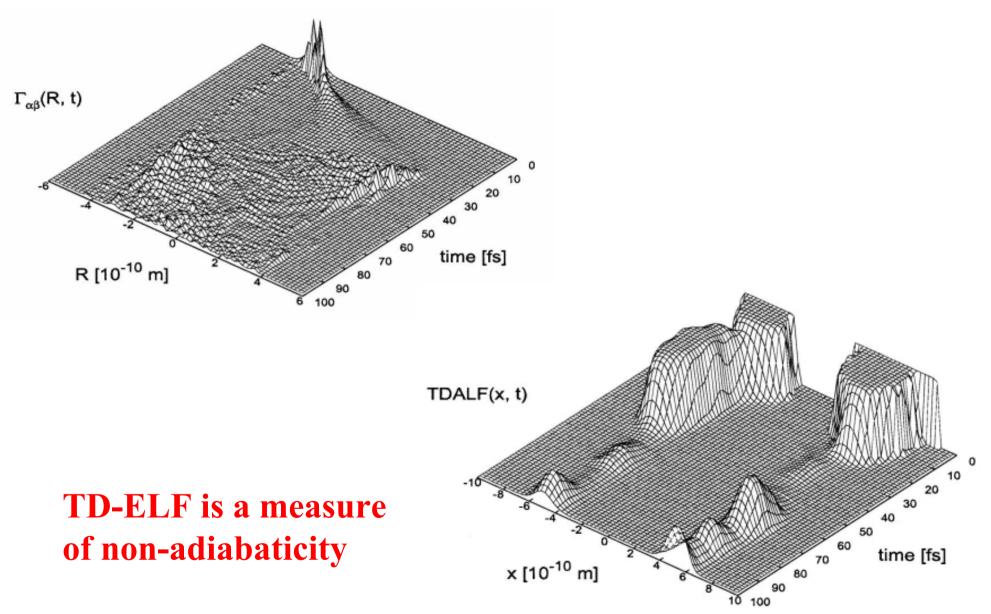
M. Erdmann, E.K.U.G., V. Engel, JCP 121, 9666 (2004)

Parallel spins



M. Erdmann, E.K.U.G., V. Engel, JCP 121, 9666 (2004)

Anti-parallel spins



Optimal Control Theory (OCT)

Normal question:

What happens if a system is exposed to a <u>given</u> laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal?

possible goals: a) system should end up in a <u>given</u> final state ϕ_f at the end of the pulse

- b) wave function should follow a <u>given</u> trajectory in Hilbert space
- c) density should follow a <u>given</u> classical trajectory r(t)

For <u>given target state</u> Φ_{f} , maximize the functional: $J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \middle| \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$

For <u>given</u> target state Φ_f , maximize the functional: $J_1 = \left| \left\langle \Psi(T) \middle| \Phi_f \right\rangle \right|^2 = \left\langle \Psi(T) \middle| \Phi_f \right\rangle \left\langle \Phi_f \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$ \hat{O}

For given target state $\Phi_{\rm f}\,$, maximize the functional:

$$J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$$
$$\hat{O}$$

with the constraints:

$$\mathbf{J}_{2} = -\alpha \left[\int_{0}^{T} \mathrm{d}t \boldsymbol{\varepsilon}^{2}(t) - \mathbf{E}_{0} \right]$$

 $E_0 = \underline{given}$ fluence

For given target state $\Phi_{\rm f}\,$, maximize the functional:

$$J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$$
$$\hat{O}$$

with the constraints:

$$J_{2} = -\alpha \left[\int_{0}^{T} dt \varepsilon^{2}(t) - E_{0} \right] \qquad E_{0} = \underline{given} \text{ fluence}$$
$$J_{3}[\varepsilon, \Psi, \chi] = -2 \operatorname{Im} \int_{0}^{T} dt \left\langle \chi(t) \middle| - i\partial_{t} - \left[\hat{T} + \hat{V} - \mu \varepsilon(t) \right] \middle| \Psi(t) \right\rangle$$

For given target state $\Phi_{\rm f}\,$, maximize the functional:

$$J_{1} = \left| \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \right|^{2} = \left\langle \Psi(T) \middle| \Phi_{f} \right\rangle \left\langle \Phi_{f} \right\rangle \Psi(T) \right\rangle = \left\langle \Psi(T) \middle| \hat{O} \middle| \Psi(T) \right\rangle$$
$$\hat{O}$$

with the constraints:

$$J_{2} = -\alpha \left[\int_{0}^{T} dt \epsilon^{2}(t) - E_{0} \right] \qquad E_{0} = \underline{given} \text{ fluence}$$
$$J_{3}[\epsilon, \Psi, \chi] = -2 \operatorname{Im} \int_{0}^{T} dt \left\langle \chi(t) \middle| - i\partial_{t} - \left[\hat{T} + \hat{V} - \mu\epsilon(t) \right] \middle| \Psi(t) \right\rangle \qquad \text{TDSE}$$

Control equations

Set the total variation of $J = J_1 + J_2 + J_3$ equal to zero:

1. Schrödinger equation with initial condition:

$$\delta_{\chi}J = 0 \rightarrow [i\partial_t \psi(t) = \hat{H}(t)\psi(t), \quad \psi(0) = \phi$$

2. Schrödinger equation with final condition:

$$\delta_{\psi}J = 0 \rightarrow [i\partial_t \chi(t) = \hat{H}(t)\chi(t), \quad \chi(T) = \hat{O}\psi(T)$$

3. Field equation:

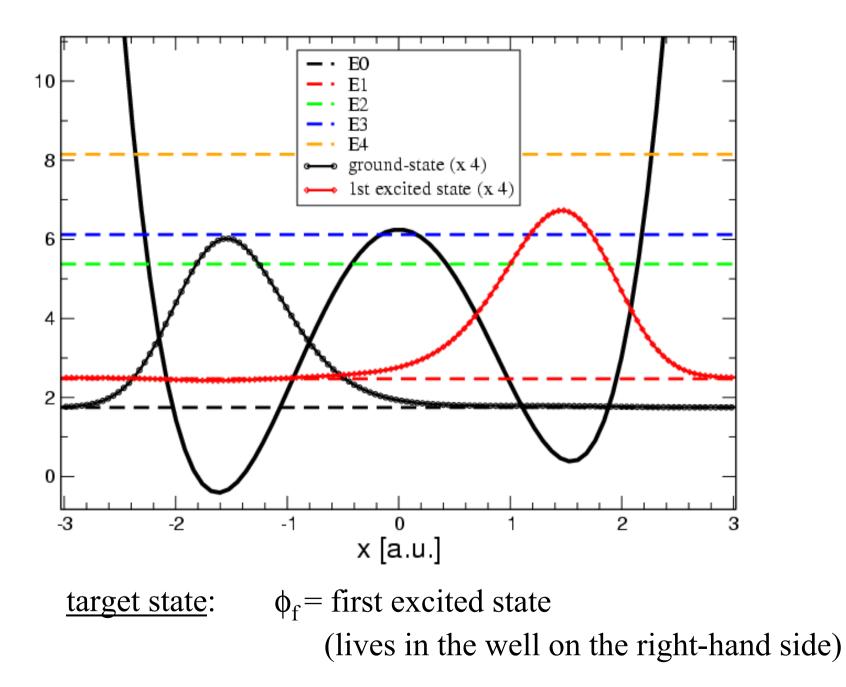
$$\delta_{\varepsilon} J = 0 \rightarrow \left[\varepsilon(t) = \frac{1}{\alpha} \operatorname{Im} \langle \chi(t) | \hat{\mu} | \psi(t) \rangle \right]$$

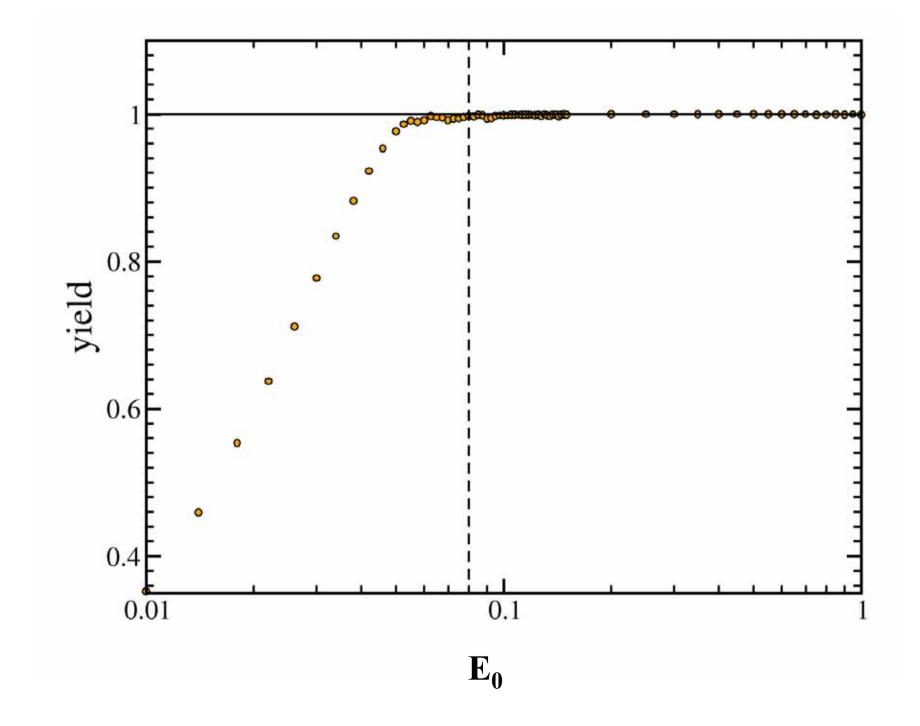
algorithm

Forward propagation of TDSE $\Rightarrow \Psi^{(k)}$

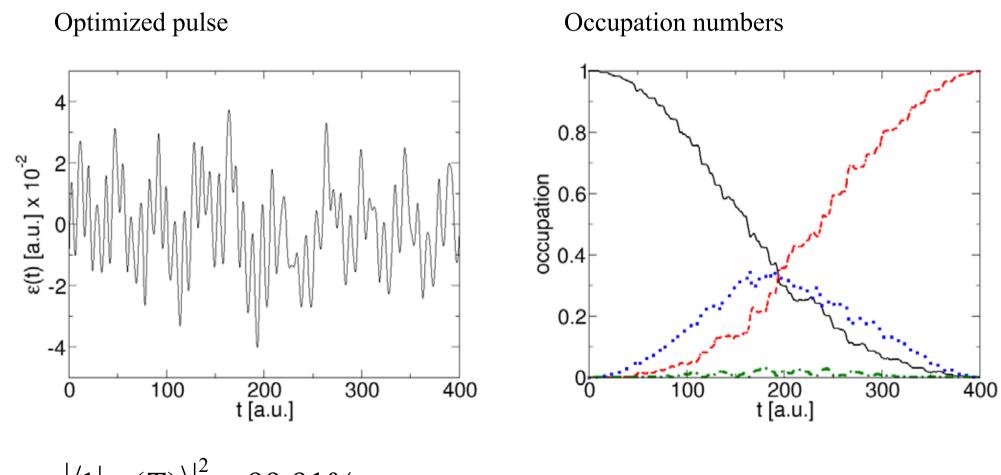
Backward propagation of TDSE $\Rightarrow \chi^{(k)}$ new field: $\widetilde{\epsilon}^{(k+1)}(t) = -\frac{1}{\alpha} \operatorname{Im} \langle \chi^{(k)}(t) | \hat{\mu} | \Psi^{(k)}(t) \rangle$

(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))



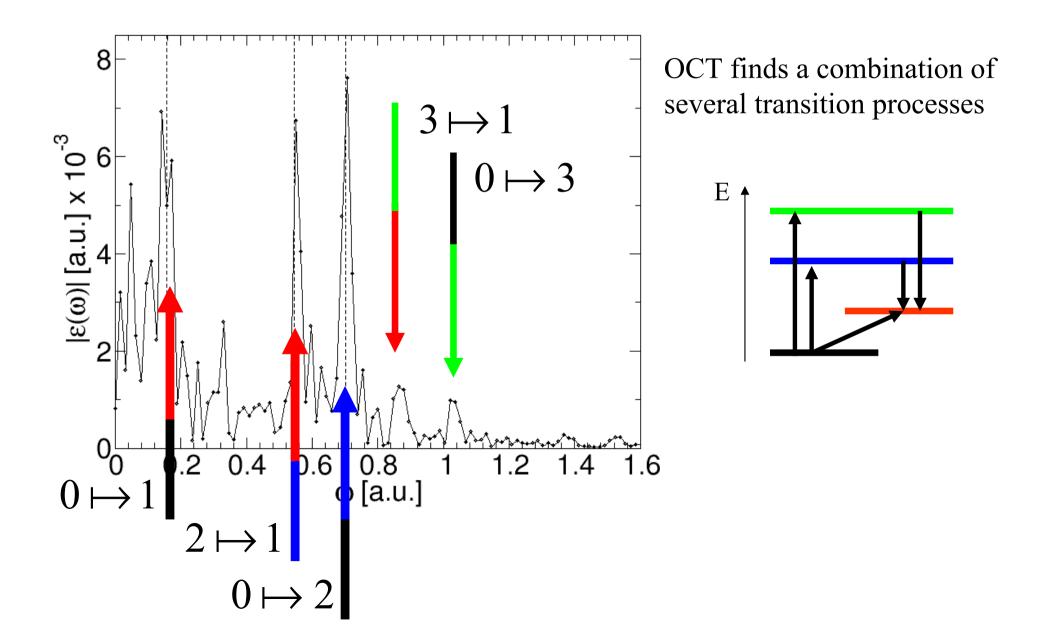


Optimization results



 $\left|\left\langle 1\left|\psi(T)\right\rangle\right|^2 = 99.91\%$

Spectrum



Filter algorithm

Forward propagation of TDSE $\Rightarrow \Psi^{(k)}$

Backward propagation of TDSE $\Rightarrow \chi^{(k)}$ new field: $\widetilde{\epsilon}^{(k+1)}(t) = -\frac{1}{\alpha} \operatorname{Im} \langle \chi^{(k)}(t) | \hat{\mu} | \Psi^{(k)}(t) \rangle$

(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))

Filter algorithm

Forward propagation of TDSE $\Rightarrow \Psi^{(k)}$

Backward propagation of TDSE $\Rightarrow \chi^{(k)}$ new field: $\widetilde{\epsilon}^{(k+1)}(t) = -\frac{1}{\alpha} \operatorname{Im} \langle \chi^{(k)}(t) | \hat{\mu} | \Psi^{(k)}(t) \rangle$

(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))

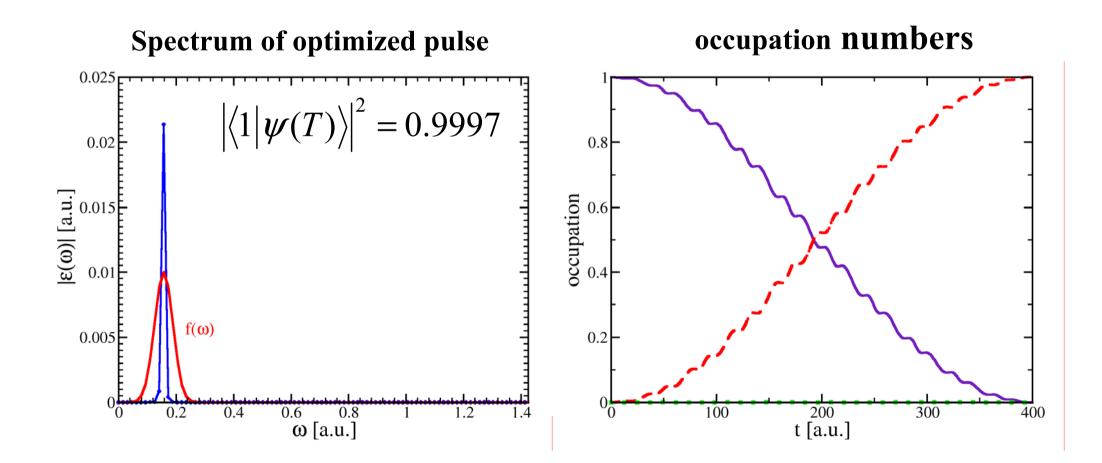
With spectral constraint:

 $\epsilon^{(k+1)}(t) \coloneqq \mathcal{F}[f(\omega) \times \mathcal{F}[\tilde{\epsilon}^{(k+1)}(t)]]$ filter function: $f(\omega) = \exp[-\gamma(\omega - \omega_0)^2] + \exp[-\gamma(\omega + \omega_0)^2]$ or $f(\omega) = 1 - \exp[-\gamma(\omega - \omega_0)^2] - \exp[-\gamma(\omega + \omega_0)^2]$

J. Werschnik, E.K.U.G., J. Opt. B 7, S300 (2005)

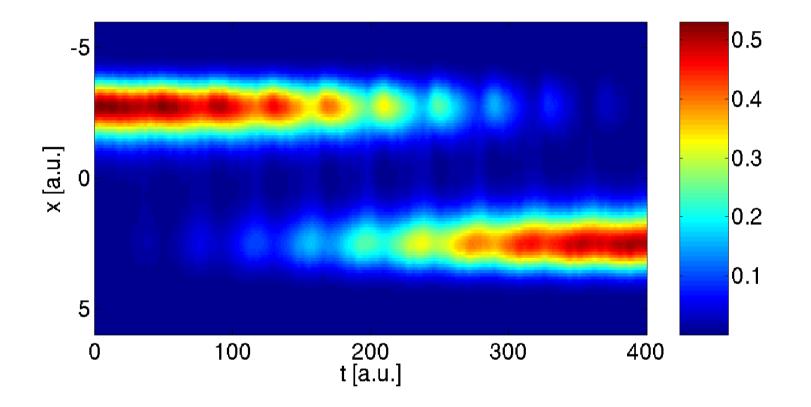
<u>Frequency constraint</u>: Only direct transition frequency ω_0 allowed





Ε

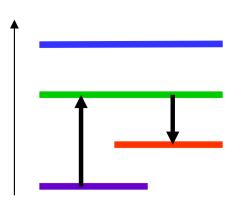
Time-Dependent Density

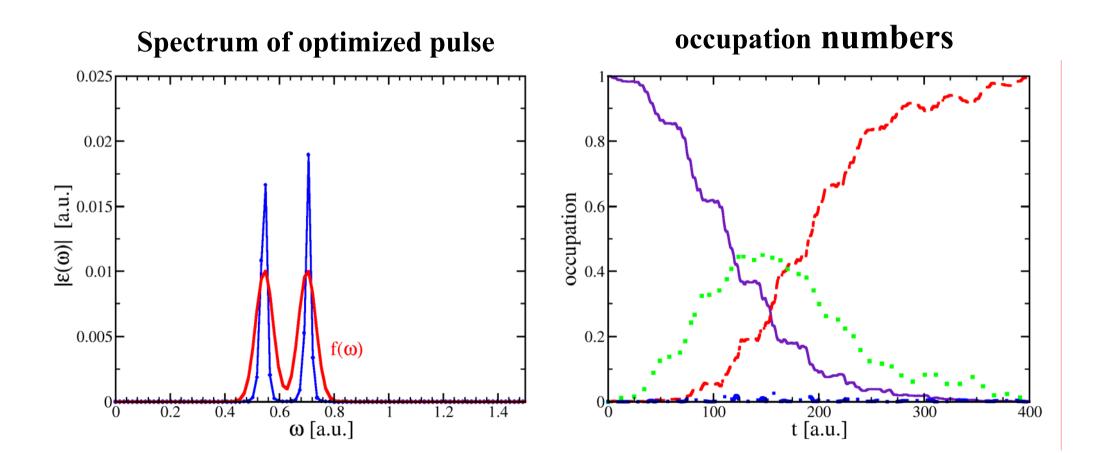


Frequency constraint:

Selective transfer via intermediate state |2
angle

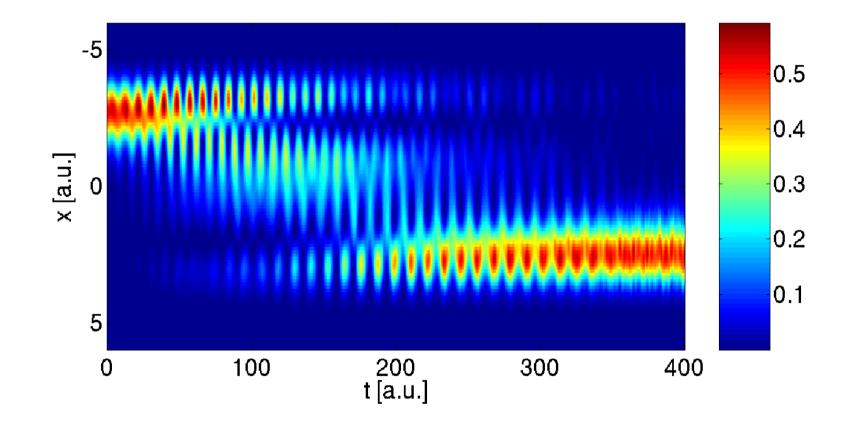
$$|0\rangle \xrightarrow{\omega_{02}} |2\rangle \xrightarrow{\omega_{21}} |1\rangle$$

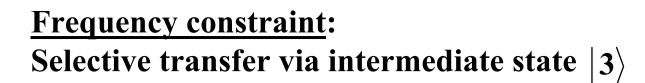




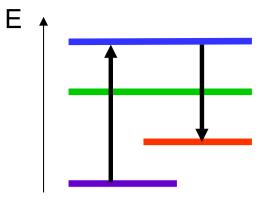
Ε

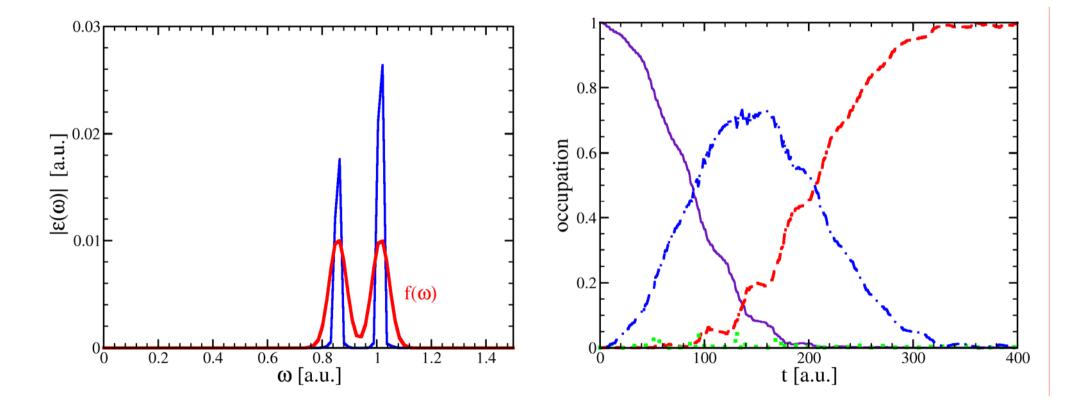
Time-Dependent Density



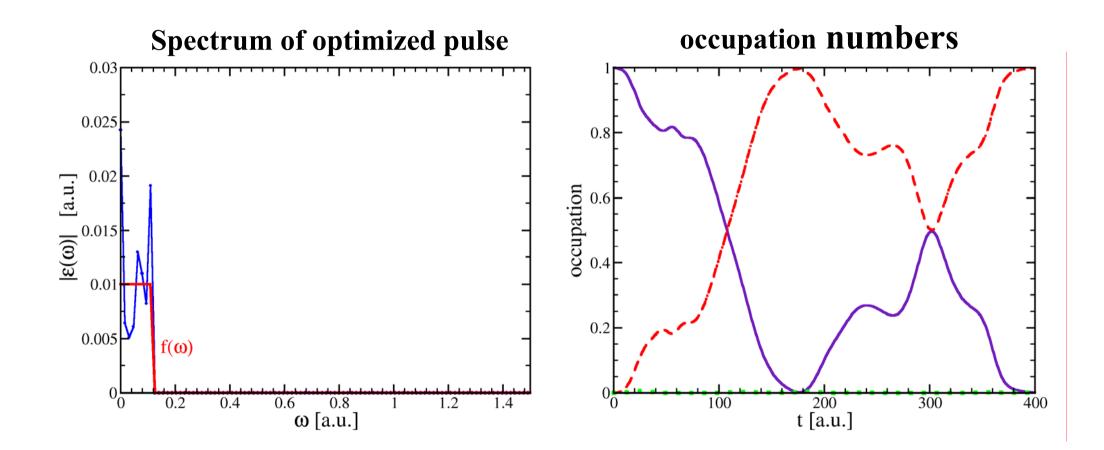








Frequency constraint: All resonances excluded



All pulses shown give practically 100% occupation at the end of the pulse

OPTIMAL CONTROL OF TIME-DEPENDENT TARGETS

I. Serban, J. Werschnik, E.K.U.G. Phys. Rev. A 71, 053810 (2005)

Maximize
$$J = J_1 + J_2 + J_3$$

 $J_1[\Psi] = \frac{1}{T} \int_0^T dt \langle \Psi(t) | \hat{O}(t) | \Psi(t) \rangle$
 $J_2 = -\alpha \left[\int_0^T dt \epsilon^2(t) - E_0 \right]$
 $J_3[\epsilon, \Psi, \chi] = -2 \operatorname{Im} \int_0^T dt \langle \chi(t) | -i\partial_t - [\hat{T} + \hat{V} - \mu\epsilon(t)] | \Psi(t) \rangle$

Control equations

• Set total functional derivative to zero

1. Schrödinger equation with initial condition: $\left[i\partial_t - \hat{H}(t)\right]\psi(t) = 0, \quad \psi(0) = \phi$

2. Inhomogenous TDSE : $\begin{bmatrix} i\partial_t - \hat{H}(t) \end{bmatrix} \chi(t) = -\frac{i}{T} \hat{O}(t) \psi(t), \quad \chi(T) = 0$

3. Field equation:

$$\mathcal{E}(t) = \frac{1}{\alpha} \operatorname{Im} \left\langle \chi(t) \left| \hat{\mu} \right| \psi(t) \right\rangle$$

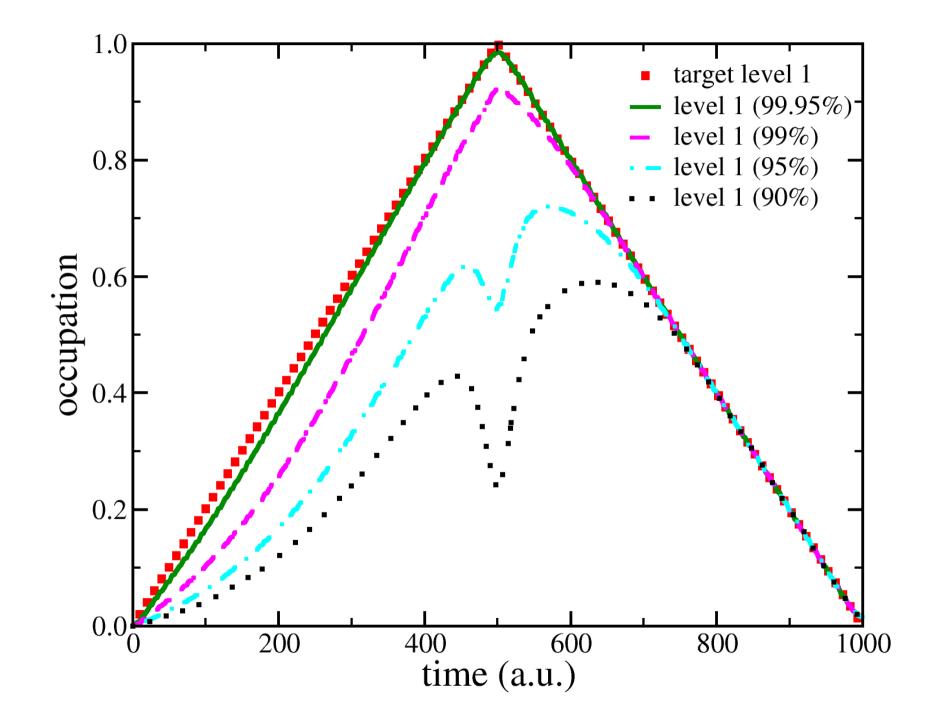
Two-level system

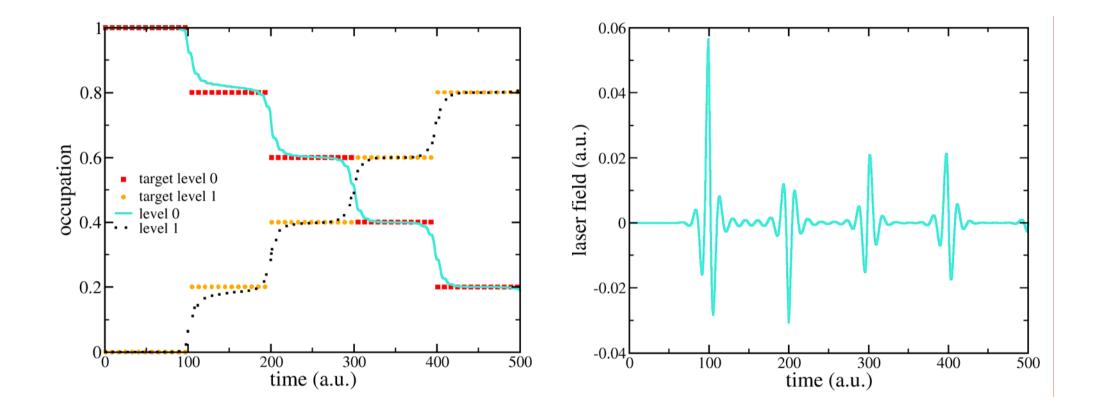
Control of time-dependent occupation numbers:

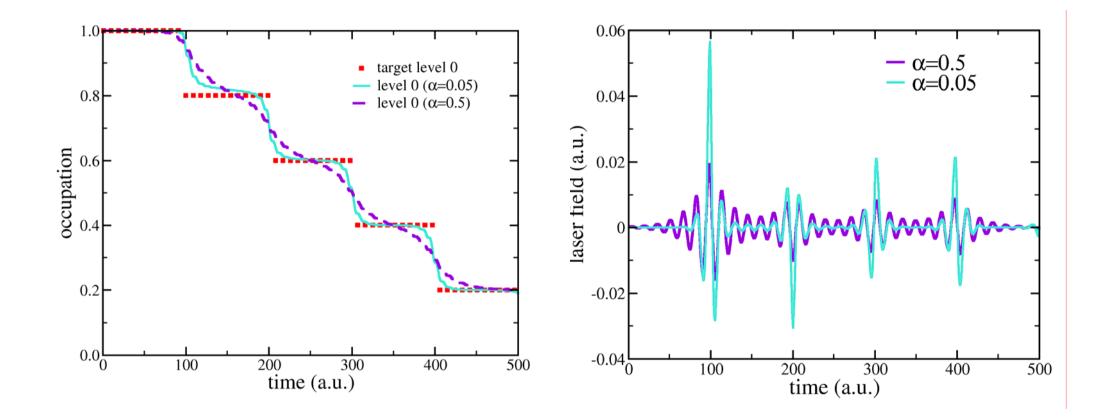
$$\hat{O}(t) = |\Phi(t)\rangle \langle \Phi(t)|$$

with
$$|\Phi(t)\rangle = \alpha_0(t)e^{-i\varepsilon_0 t}|0\rangle + \alpha_1(t)e^{-i\varepsilon_1 t}|1\rangle$$

 $|\alpha_0(t)|^2$ and $|\alpha_1(t)|^2$ are given target occupations with $|\alpha_0(t)|^2 + |\alpha_1(t)|^2 = 1$







Control of time-dependent density

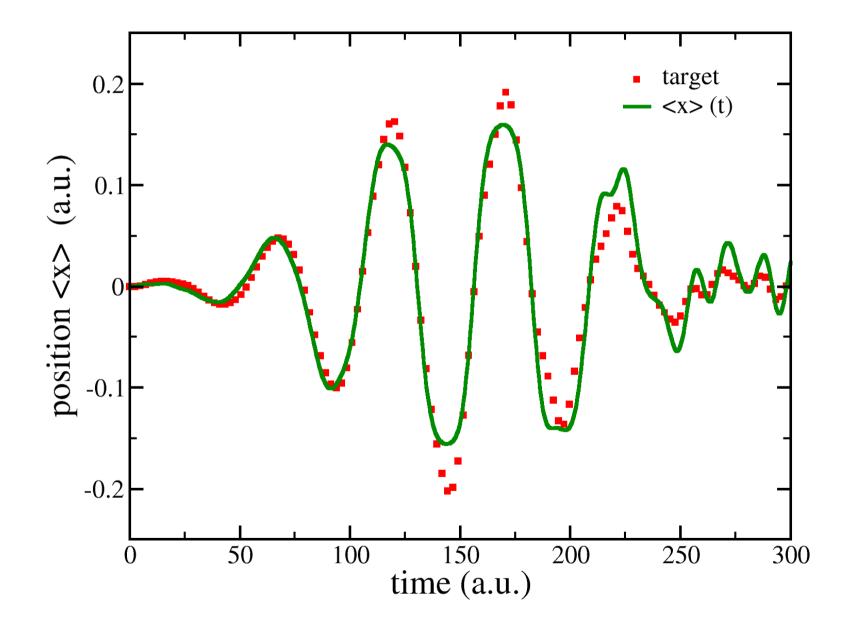
$$\hat{O}(t) = \delta(x - x_0(t)) \approx \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x - x_0(t))^2/2\sigma^2}$$

with <u>given</u> trajectory $x_0(t)$.

Algorithm maximizes the density along the path $x_0(t)$:

$$\max \int_{0}^{T} dt \langle \psi(t) | \delta(x - x_{0}(t)) | \psi(t) \rangle$$
$$= \max \int_{0}^{T} dt \, n(x_{0}(t), t)$$

Control of time-dependent density of a 1D-hydrogen atom



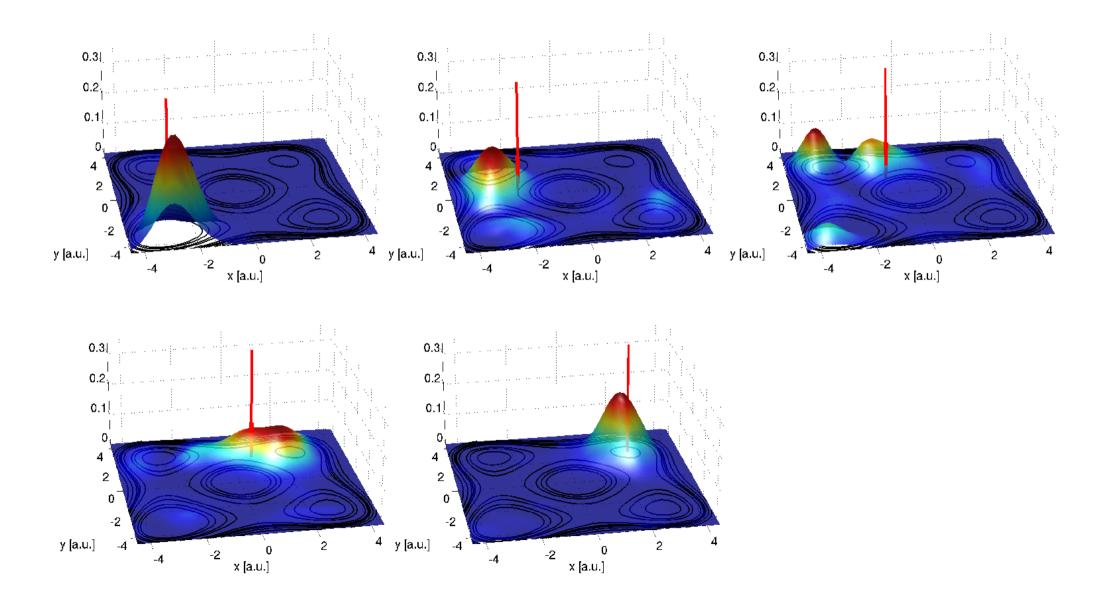
Control of charge transfer along selected pathways

Trajectory 1

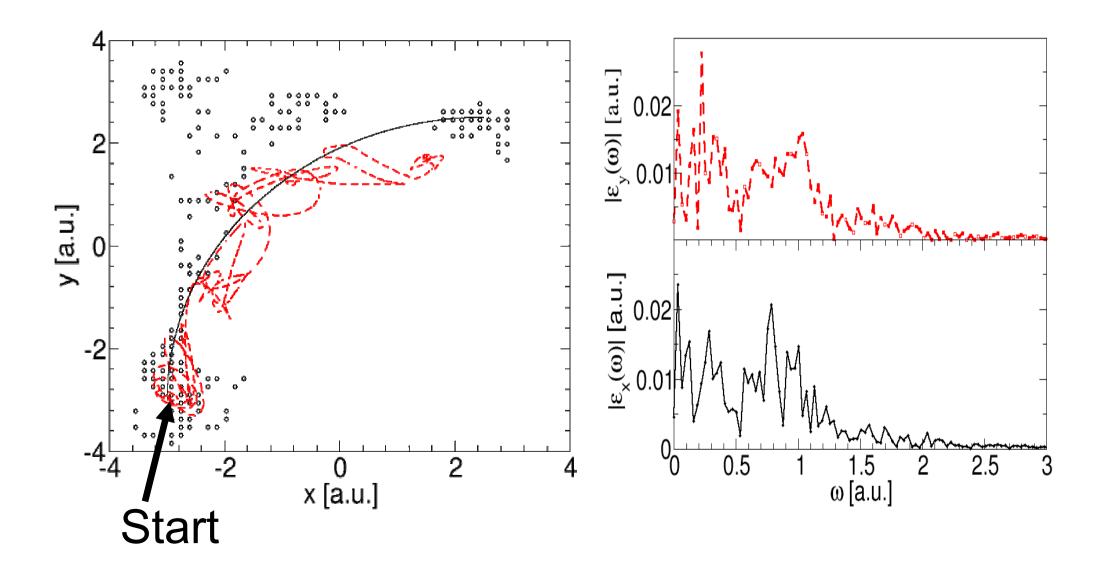
Trajectory 2



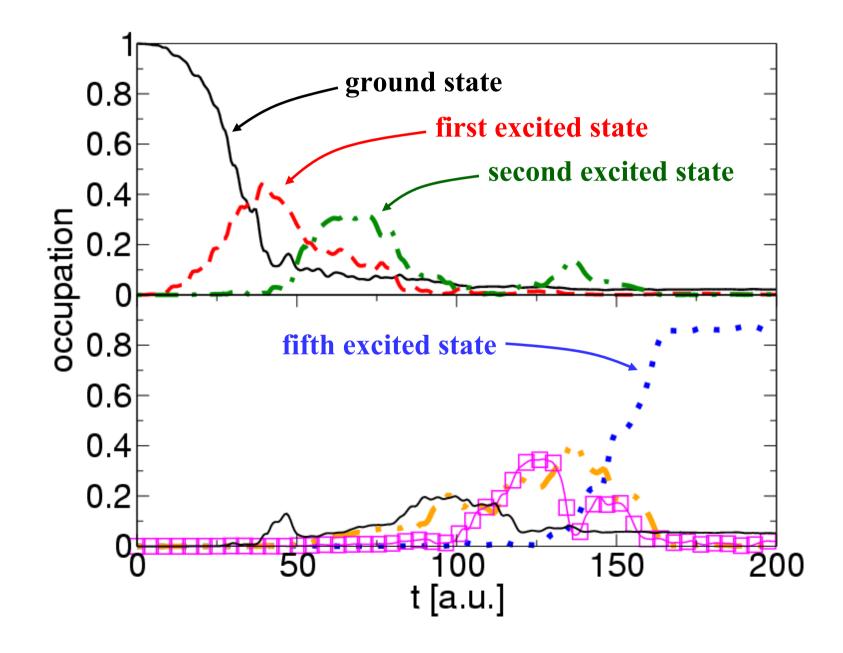
Time-evolution of wavepacket with the optimal laser pulse for trajectory 2



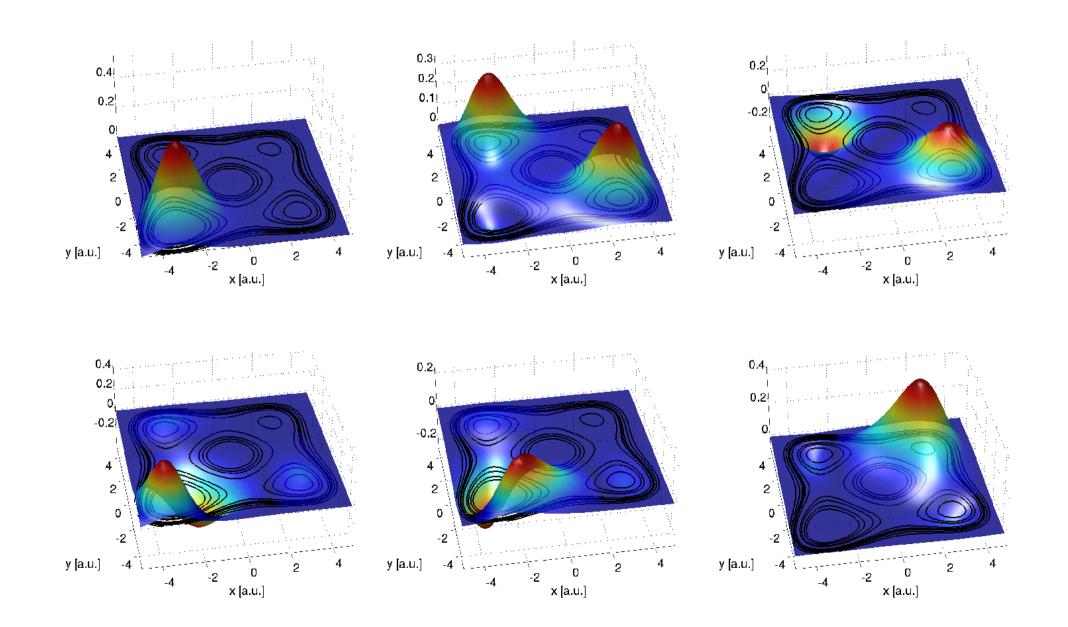
Trajectory 2: Results



Populations of eigenstates



Densities of lowest six eigenstates

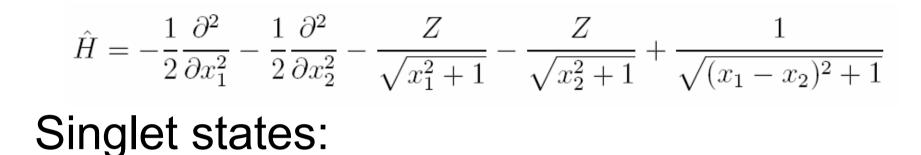


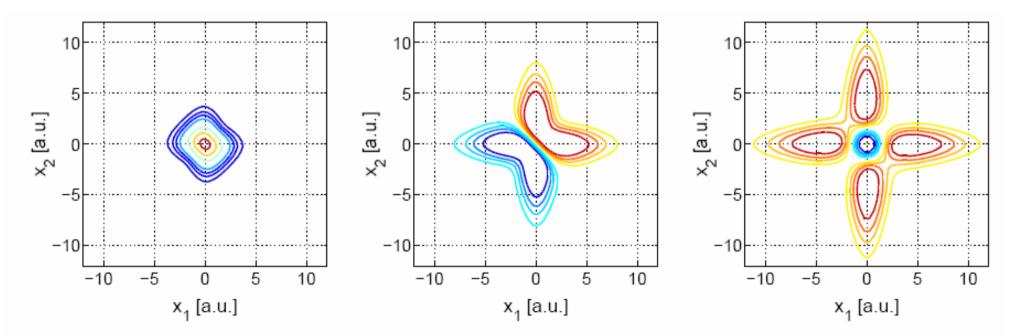
Control of many-body systems

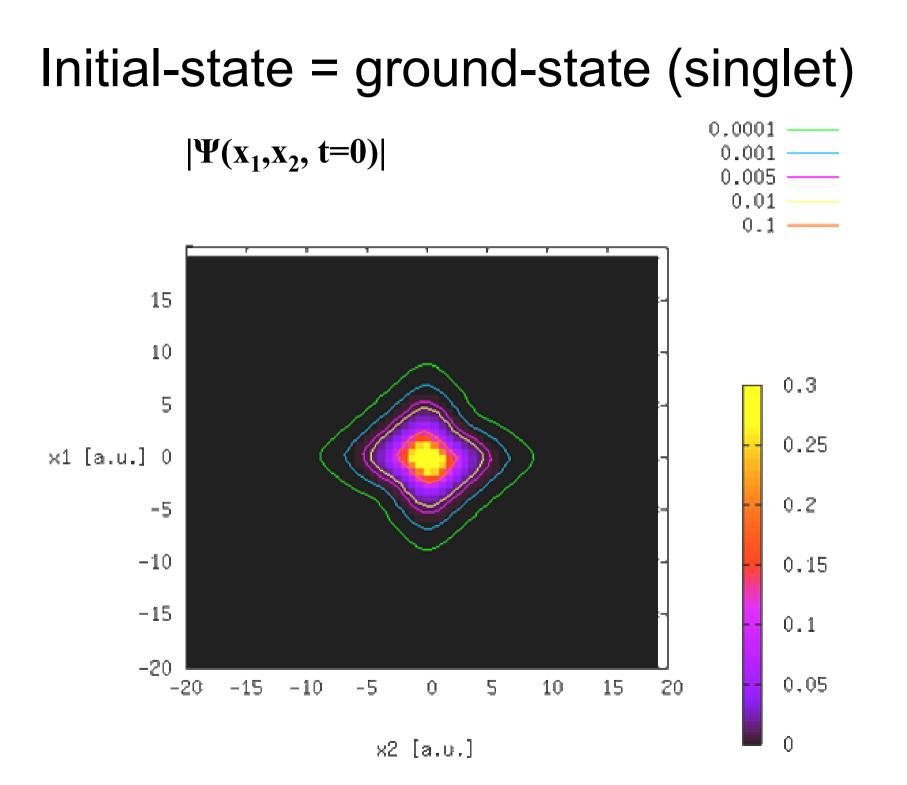
• So far only one electron

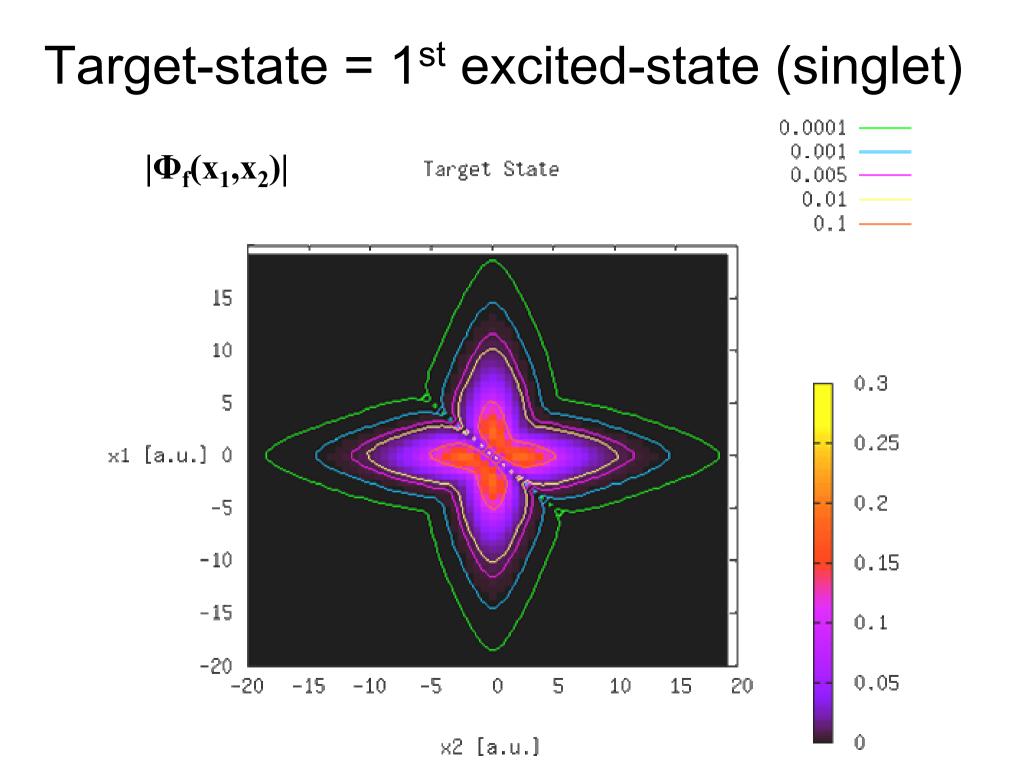
 OCT is easily extended to many-body problems: The one-body SE is simply replaced by the many-body SE

1D Helium model

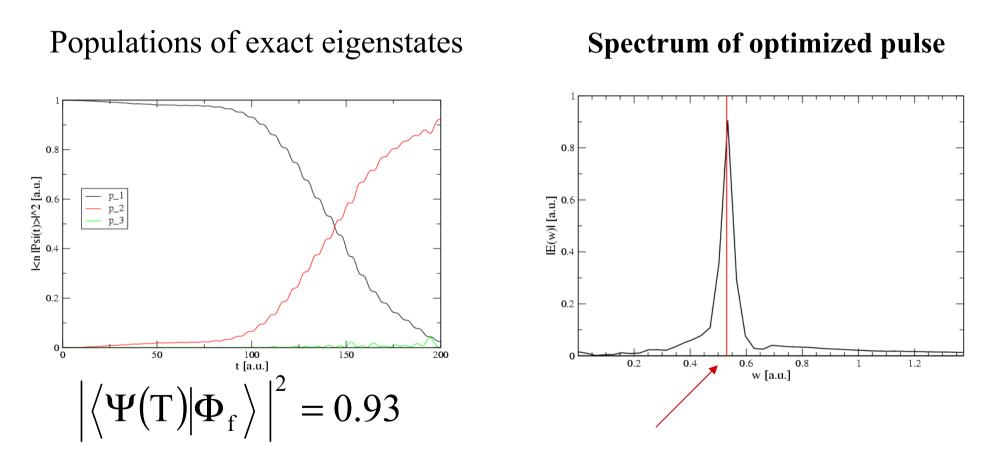








Results 1D Helium



Optimization finds the correct transition frquency

Control of many-body systems

 Problem: For 3 or more degrees of freedom, the full solution of the TDSE becomes computationally very hard

→ Instead of solving the many-body TDSE, invoke TDDFT

TDDFT+OCT: A perfect couple

 Laser pulses from OCT are determined iteratively – TDDFT is computationally efficient (local potential)

 Excitation energies from TDDFT (in linear response) are often quite o.k. – important to find an optimal pulse that works

TDDFT+OCT: Equations

• TDKS equations as a constraints:

$$J = J_{1} - \alpha \int_{0}^{T} dt \, \varepsilon^{2}(t)$$
$$-2 \operatorname{Im} \sum_{i=1}^{T} \int_{0}^{T} dt \left\langle \lambda_{i}(t) \middle| i\partial_{t} - \hat{h}_{KS}(t) \middle| \phi_{i}^{KS}(t) \right\rangle$$
$$\hat{h}_{KS}(t) = -\frac{\nabla^{2}}{2} + v_{KS}[n](\vec{r}, t)$$

every KS-orbital gets a Lagrange multiplier

TDDFT+OCT: Control equations

1. Kohn-Sham equation with initial condition: $\delta_{\lambda_m} J = 0 \rightarrow \left[i \partial_t - \hat{h}_{KS}[n](t) \right] \phi_m^{KS}(t) = 0, \quad \phi_m^{KS}(0) = \varphi_m^{KS}$

2. TDSE equation with final condition and inhomogeneity: $\delta_{\phi_m^{KS}} J = 0 \rightarrow \left[i\partial_t - \hat{h}_{KS}(t) \right] \lambda_m(t) = -iD_{KS}[\lambda_j(t), \phi_j^{KS}(t)], \quad \lambda_m(T) = \hat{O}[\phi_j^{KS}(T)] \right]$

3. Field equation: $\delta_{\varepsilon} J = 0 \rightarrow \left[\mathcal{E}(t) = \frac{1}{\alpha} \sum_{i=1}^{N} \operatorname{Im} \left\langle \lambda_{j}(t) \middle| \hat{\mu} \middle| \phi_{j}^{KS}(t) \right\rangle \right]$

use available iterative schemes to solve eqs.

j = 1....N

Problem: Non-interacting fermions are generally not controllable

TWO NONINTERACTING ELECTRONS IN SINGLET STATE

1st electron: initial
$$\phi_0(r)\chi_{\uparrow} \xrightarrow{\text{TDSE}} \text{final } \phi_f(r)\chi_{\uparrow}$$

2nd electron: initial $\phi_0(r)\chi_{\downarrow} \xrightarrow{TDSE}$ final $\phi_f(r)\chi_{\downarrow}$

Initial two-body state:

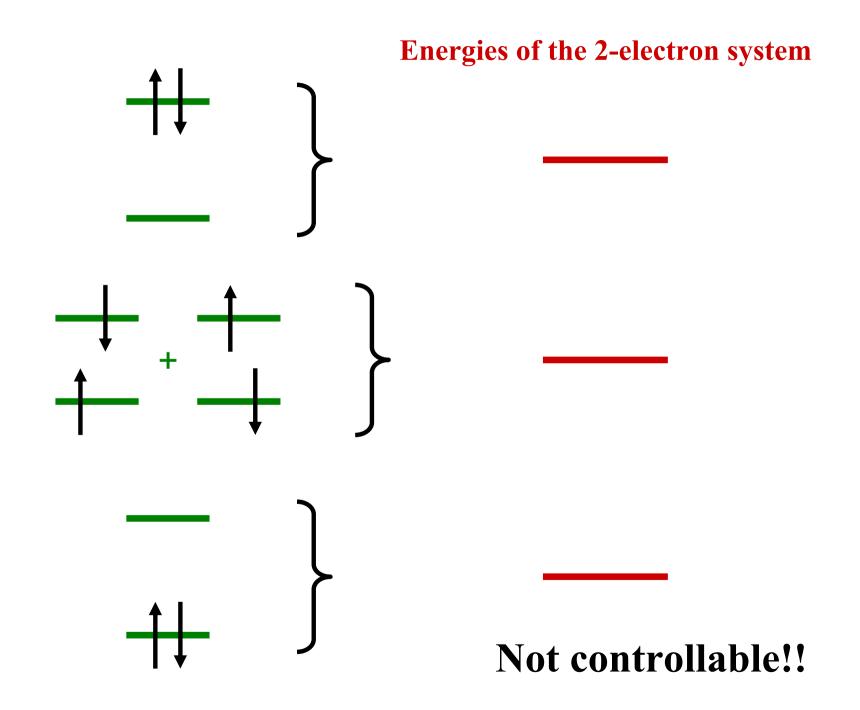
 $\Psi_0 = \varphi_0(\mathbf{r}_1)\varphi_0(\mathbf{r}_2)\chi_{\text{singlet}}$

Final two-body state:

 $\Psi_{\rm f} = \varphi_{\rm f}(\mathbf{r}_1)\varphi_{\rm f}(\mathbf{r}_2)\chi_{\rm singlet}$

Maximize overlap between Ψ_f and lowest excited state

$$\begin{split} \Psi_{1} &= \frac{1}{\sqrt{2}} \left[\phi_{0}(\mathbf{r}_{1}) \phi_{1}(\mathbf{r}_{2}) + \phi_{0}(\mathbf{r}_{2}) \phi_{1}(\mathbf{r}_{1}) \right] \chi_{\text{singlet}} \\ &\left\langle \Psi_{1} \left| \Psi_{f} \right\rangle = \frac{2}{\sqrt{2}} \left\langle \phi_{0} \left| \phi_{f} \right\rangle \left\langle \phi_{1} \left| \phi_{f} \right\rangle \right. \\ &\left. \phi_{f}(\mathbf{r}) = \sum_{j} \alpha_{j} \phi_{j}(\mathbf{r}) \right. \\ &\left| \left\langle \Psi_{1} \left| \Psi_{f} \right\rangle \right|^{2} = 2 \left| \alpha_{0} \right|^{2} \left| \alpha_{1} \right|^{2} = 2 \left| \alpha_{0} \right|^{2} \left(1 - \left| \alpha_{0} \right|^{2} \right) \\ &\left. \text{Maximum of } f(\mathbf{x}) = 2\mathbf{x}(1 - \mathbf{x}) \text{ is at } \mathbf{x} = \frac{1}{2} \\ & \text{Value of } f(\mathbf{x}) \text{ at maximum } = \frac{1}{2} \\ & \text{J Werschnik, K Burke, EKUG, JCP 123, 062206 (2005)} \end{split}$$



Problems, Problems, Problems...

• Non-interacting system is not controllable!!

Does it matter in KS context? NO! (exact KS potential would also produce overlap ½ or less.)

- Real task: Find functional of KS orbitals which, when maximized, finds a pulse that drives the INTERACTING system from Ψ(t=0) to the excited many-body state Φ_f (i.e. overlap with a KS determinnt does not matter).
- The real problem: We still have to maximize $|\langle \Psi(T) | \Phi_f \rangle|^2$. But neither Ψ nor Φ_f are available in KS framework.

We still want to maximize $|\langle \Psi(T) | \Phi_f \rangle|^2$.

Bold attempt: Maximize
$$\left| \left\langle \Psi^{KS}(T) \middle| \Phi_{f}^{KS} \right\rangle \right|^{2}$$
 instead!

Result not bad: For 1D-Helium, the pulse optimized in this way yields, when inserted in the INTERACTING TDSE, an occupation of 70 % for the 1st excited many-body state! (The fully interacting optimization yields 93%)

