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Time-Dependent Electron Localization Function

(TD-ELF)

Time-Dependent Electron Localization Function

(TD-ELF)

GOAL

Time-resolved visualization of the breaking and 

formation of chemical bonds.



How can one give a rigorous mathematical meaning to 
chemical concepts such as

• Single, double, triple bonds
• Lone pairs

Note: • Density ρσ (r) is not useful!
• Orbitals are ambiguous (w.r.t. unitary 

transformations)
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= conditional probability of finding an electron 
with spin σ at r’ if we know with certainty that 
there is an electron with the same spin at r.

=  probability of finding an electron with spin σ at r 
and another electron with the same spin at r ’.

=  diagonal of two-body density matrix
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Coordinate transformation
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If we know there is an electron with spin σ at r, then 
Pσ (r, r + s) is the (conditional) probability of finding 
another electron at s, where s is measured from the 
reference point r.

If we know there is an electron with spin σ at r, then pσ (r,s) is the 
conditional probability of finding another electron at the distance s
from r.
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Expand in a Taylor series:

The first two terms vanish.
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Cσ (r ) is a measure of electron localization.

Cσ (r ) small means strong localization at r

Why?  Cσ (r ), being the  s2-coefficient, gives the probability of 

finding a second like-spin electron very near the reference 

electron.  If this probability very near the reference electron is 

low then this reference electron must be very localized.



Cσ is always ≥ 0 (because pσ is a probability) and Cσ (r ) is not
bounded from above.

Define as a useful visualization of localization
(Becke, Edgecombe, JCP 92, 5397 (1990))

1  ELF  0 ≤≤Advantage:  ELF is dimensionless and

where

is the kinetic energy density of the 
uniform gas.
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ELF

A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 
Engl. 36, 1808 (1997)



For a determinantal wave function one obtains
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in the static case:

A.D. Becke, K.E. Edgecombe, J.Chem. Phys. 92, 5397 (1990)

in the time-dependent case:

T. Burnus, M. Marques, E.K.U.G., Phys. Rev. A (Rapid Comm) 71, 
010501 (2005)
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Ethyne (acetylene) in a strong laser field
Scattering of a high energetic
proton on ethene (ethylene)



TD-ELF Examples

Ethyne (acetylene) in a strong laser field



TD-ELF Examples

Scattering of an energetic proton from ethene (ethylene)



INFORMATION ACCESSIBLE THROUGH TDELF

How long does it take to break a bond in
a laser field?

Which bond breaks first, which 
second, etc, in a collision process?

Are there intermediary (short-lived) bonds 
formed during a collision, which are not 
present  any more in the collision products ?
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MODEL

Nuclei (1) and (2) are heavy: Their positions are fixed



Anti-parallel spins Parallel spins

M. Erdmann, E.K.U.G., V. Engel, JCP 121, 9666 (2004)



Parallel spins

M. Erdmann, E.K.U.G., V. Engel, JCP 121, 9666 (2004)



Anti-parallel spins

TD-ELF is a measure
of non-adiabaticity



Normal question:

What happens if a system is exposed to a given laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal?

Optimal Control Theory (OCT)

possible goals: a) system should end up in a given final state φf

at the end of the pulse
b) wave function should  follow a given trajectory 

in Hilbert space
c) density should  follow a given classical 

trajectory r(t)
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Optimal control of static targets
(standard formulation)

For given target state Φf  , maximize the functional: 



Optimal control of static targets
(standard formulation)
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Optimal control of static targets
(standard formulation)
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For given target state Φf  , maximize the functional: 
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Optimal control of static targets
(standard formulation)

( ) ( ) ( ) ( ) ( )TÔTTTTJ    f f  
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with the constraints:

TDSE
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For given target state Φf  , maximize the functional: 



Control equations

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:
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Set the total variation of  J = J1 + J2 + J3 equal to zero:



algorithm

Forward propagation of TDSE ⇒ Ψ(k)

Backward propagation of TDSE ⇒ χ(k)

new field:
( )( ) ( )( ) ( )( )tˆtIm
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(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))



target state: φf = first excited state
(lives in the well on the right-hand side)



E0



Optimization results

2
1 ( ) 99.91%Tψ =

Optimized pulse Occupation numbers



Spectrum

OCT finds a combination of 
several transition processes
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Filter algorithm

Forward propagation of TDSE ⇒ Ψ(k)

Backward propagation of TDSE ⇒ χ(k)

new field:
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(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))



Filter algorithm

Forward propagation of TDSE ⇒ Ψ(k)

Backward propagation of TDSE ⇒ χ(k)

new field:
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(W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998))

With spectral constraint:

filter function:
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J. Werschnik, E.K.U.G., J. Opt. B 7, S300 (2005)



Frequency constraint: 
Only direct transition frequency ω0 allowed

E

Spectrum of optimized pulse occupation numbers
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Time-Dependent Density



Frequency constraint: 
Selective transfer via intermediate state 2

120 2102 ωω ⎯→⎯⎯→⎯

E

Spectrum of optimized pulse occupation numbers



Time-Dependent Density



3

130 3103 ωω ⎯→⎯⎯→⎯

Frequency constraint: 
Selective transfer via intermediate state

E



Frequency constraint: All resonances excluded

Spectrum of optimized pulse occupation numbers



All pulses shown give 

practically 100% occupation 

at the end of the pulse



OPTIMAL CONTROL OF 
TIME-DEPENDENT TARGETS

Maximize
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Control equations

• Set total functional derivative to zero

1. Schrödinger equation with initial condition:

2. Inhomogenous TDSE :

3. Field equation:
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Two-level system

Control of time-dependent occupation numbers:
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Control of time-dependent density
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Algorithm maximizes the density along the path x0(t):



Control of time-dependent density of a 1D-hydrogen atom 



Trajectory 1 Trajectory 2

Control of charge transfer along selected pathways



Time-evolution of wavepacket with the optimal laser pulse 
for trajectory 2



Trajectory 2: Results

Start





Populations of eigenstates

ground state

first excited state

second excited state

fifth excited state



Densities of lowest six eigenstates



• So far only one electron

• OCT is easily extended to many-body 
problems: The one-body SE is simply 
replaced by the many-body SE

Control of many-body systems



1D Helium model

Singlet states:



Initial-state = ground-state (singlet)

|Ψ(x1,x2, t=0)|



Target-state = 1st excited-state (singlet)

|Φf(x1,x2)|



Results 1D Helium

Spectrum of optimized pulsePopulations of exact eigenstates

Optimization finds the correct transition frquency
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• Problem: For  3 or more degrees of 
freedom, the full solution of the TDSE 
becomes computationally very hard 

Control of many-body systems

Instead of solving the many-body TDSE, 
invoke TDDFT



TDDFT+OCT: A perfect couple 

• Laser pulses from OCT are determined 
iteratively – TDDFT is computationally 
efficient (local potential)

• Excitation energies from TDDFT (in linear 
response) are often quite o.k. – important 
to find an optimal pulse that works 



TDDFT+OCT: Equations

• TDKS equations as a constraints:
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TDDFT+OCT: Control equations

1. Kohn-Sham equation with initial condition:

2. TDSE equation with final condition and inhomogeneity:

3. Field equation:
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Problem: Non-interacting fermions
are generally not controllable



TWO NONINTERACTING ELECTRONS IN SINGLET STATE

1st electron:

2nd electron:

( ) ( ) ↑↑ χϕ⎯⎯ →⎯χϕ  r  final     r  initial f
TDSE

0

( ) ( ) ↓↓ χϕ⎯⎯ →⎯χϕ  r  final     r  initial f
TDSE

0

Initial two-body state:

Final two-body state:
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( ) ( ) singlet2f1ff  r r χϕϕ=Ψ



Maximize overlap between Ψf and lowest excited state
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J Werschnik, K Burke, EKUG, JCP 123, 062206 (2005)



+

Energies of the 2-electron system

Not controllable!!



Problems, Problems, Problems…

• Non-interacting system is not controllable!!

Does it matter in KS context?   NO!
(exact KS potential would also produce overlap ½ or less.)

• Real task: Find functional of KS orbitals which, when 
maximized, finds a pulse that drives the INTERACTING 
system from Ψ(t=0) to the excited many-body state Φf  (i.e. 
overlap with a KS determinnt does not matter).

• The real problem: We still have to maximize                     
But neither Ψ nor Φf are available in KS framework. 
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We still want to maximize ( ) .T
2

  f  ΦΨ

Bold attempt: Maximize                               instead!

Result not bad: For 1D-Helium, the pulse optimized in this way
yields, when inserted in the INTERACTING TDSE, an occupation
of  70 % for the 1st excited many-body state! (The fully interacting
optimization yields 93%)
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