The Multi-Faceted Impacts of Phages in the Plant Phyllosphere

Britt Koskella

@bkoskella 🏏

Assistant Professor, Integrative Biology UC Berkeley

Annual Review of Phytopathology

Multifaceted Impacts of Bacteriophages in the Plant Microbiome

Britt Koskella¹ and Tiffany B. Taylor²

Ecology Evolution

Plant pathogen

Bacteriophages

Annual Review of Phytopathology

Multifaceted Impacts of Bacteriophages in the Plant Microbiome

Britt Koskella¹ and Tiffany B. Taylor²

Plant pathogen

Bacteriophages

Bacterial trait	Phage-mediated selection	Impact on fitness within the plant
Growth rate	Lytic phages typically decrease population size; both lytic and temperate phages can increase growth rate	Positively associated
Exopolysaccharide production	Can provide protection against phage infection; also acts as phage receptors	Positively associated
Quorum-sensing ability	Linked with phage defense and life history	Positively associated
Type IV pili expression	Important for phage attachment	Associated with plant pathogen virulence
Density/function of lipopolysaccharide receptors	Common phage receptor	Important for growth in plant environment; also interacts with plant defenses
Increased motility	Can decrease phage attachment efficiency; also aids in cell surface access by phages	Positively associated
Pyocyanin and pyoverdin production	Loss associated with phage resistance	Positively associated, known virulence factors
Phase variation (programmed genetic variation)	Allows persistence of genetically sensitive bacteria	Within-population heterogeneity can hinder growth; also allows evasion of plant defense
Biosurfactant production	Possible increase in phage dispersal	Positively associated
Formation of biofilms	Can protect bacteria from phage infection; phages can also degrade biofilm	Often associated with virulence

- Koskella & Taylor, Ann Rev Phytopath (2018)

Annual Review of Phytopathology

Multifaceted Impacts of Bacteriophages in the Plant Microbiome

Britt Koskella¹ and Tiffany B. Taylor²

Plant pathogen

Host-associated microbiome

???????

Bacterial trait	Phage-mediated selection	Impact on fitness within the plant
Growth rate	Lytic phages typically decrease population size; both lytic and temperate phages can increase growth rate	Positively associated
Exopolysaccharide production	Can provide protection against phage infection; also acts as phage receptors	Positively associated
Quorum-sensing ability	Linked with phage defense and life history	Positively associated
Type IV pili expression	Important for phage attachment	Associated with plant pathogen virulence
Density/function of lipopolysaccharide receptors	Common phage receptor	Important for growth in plant environment; also interacts with plant defenses
Increased motility	Can decrease phage attachment efficiency; also aids in cell surface access by phages	Positively associated
Pyocyanin and pyoverdin production	Loss associated with phage resistance	Positively associated, known virulence factors
Phase variation (programmed genetic variation)	Allows persistence of genetically sensitive bacteria	Within-population heterogeneity can hinder growth; also allows evasion of plant defense
Biosurfactant production	Possible increase in phage dispersal	Positively associated
Formation of biofilms	Can protect bacteria from phage infection; phages can also degrade biofilm	Often associated with virulence

- Koskella & Taylor, Ann Rev Phytopath (2018)

The phyllosphere as a model system

Host-associated microbiome

(a) Filtration steps used for each treatment

- Morella et al., Molecular Ecology (2018)

Bray-Curtis
Day explains 12% of variation (p= .006)
Treatment explains 13% (p = .002)

Norma Morella

Alpha diversity (Shannon's)

- Morella et al., Molecular Ecology (2018)

Norma Morella

Norma Morella

Treatments	Abbreviation
Passaged bacteria	В
Passaged bacteria and passaged phage	BP
Passaged bacteria; ancestral phage	BPa
Ancestral bacteria; passaged phage	BaP

Norma Morella

Treatment explains 42% of variation (ANOSIM; p=0.001)

Treatments	Abbreviation
Passaged bacteria	В
Passaged bacteria and passaged phage	BP
Passaged bacteria; ancestral phage	BPa
Ancestral bacteria; passaged phage	BaP

Norma Morella

Treatments	Abbreviation
Passaged bacteria	В
Passaged bacteria and passaged phage	BP
Passaged bacteria; ancestral phage	BPa
Ancestral bacteria; passaged phage	BaP

Norma Morella

Treatments	Abbreviation
Passaged bacteria	В
Passaged bacteria and passaged phage	BP
Passaged bacteria; ancestral phage	BPa
Ancestral bacteria; passaged phage	BaP

Norma Morella

What Can't We Learn from a Test Tube

Britt Koskella

@bkoskella 💆

Assistant Professor, Integrative Biology UC Berkeley

SCIENCE & INNOVATION | THE LOOM

Eaters of bacteria: Is phage therapy ready for the big time?

1 MINUTE READ

PUBLISHED MAY 20, 2011

BY CARL ZIMMER

Viruses that infect bacteria–known as bacteriophages–are the most abundant living things on Earth. (Yeah, that's right. I called viruses living things. You gotta problem with that?) For nearly a century, doctors and scientists have dreamed of using them as medical weapons against the microbes that make us sick. Over at the University of Chicago Press's blog, I discuss the enduring dream of phage therapy with MIT phage engineer Tim Lu, whom I profiled last year for *Technology Review*. This is my third UCP blog post to celebrate the publication of *A Planet of Viruses*; the next and last will appear next Friday. 🛘

- Meaden et al. Evolution 2015

- Hernandez et al. (Evolution 2019)

Cathy Hernandez

- Hernandez et al. (Evolution 2019)

Arms race dynamics

Arms race dynamics

Fluctuating selection dynamics

- Scanlan et al. (2010) Mol Ecol

- Gaba & Ebert (2009) *TREE*

Ecology Letters, (2011) 14: 635-642

doi: 10.1111/j.1461-0248.2011.01624.x

LETTER

Host-parasite coevolutionary arms races give way to fluctuating selection

Alex R. Hall, 1* Pauline D.

Scanlan, 1† Andrew D. Morgan 1,2

and Angus Buckling 1,3

PROCEEDINGS B

rspb.royalsocietypublishing.org

Population mixing promotes arms race host – parasite coevolution

Pedro Gómez^{1,†}, Ben Ashby^{1,2} and Angus Buckling¹

-Hall et al. (2011) Ecol Lett -Gomez et al. (2014) Proc R Soc B

A) Infectivity of phage from September 2011 on time-shifted bacteria (Koskella 2014)

A) Infectivity of phage from September 2011 on time-shifted bacteria (Koskella 2014)

B) Resistance of bacteria from September 2011 to time-shifted phage (Koskella & Parr 2015)

A) Infectivity of phage from September 2011 on time-shifted bacteria (Koskella 2014)

B) Resistance of bacteria from September 2011 to time-shifted phage (Koskella & Parr 2015)

C) Illustration of the importance of timescale in interpretation of time-shift experiments

Arms race dynamics

Fluctuating selection

- Gaba & Ebert (2009) Trends in Ecology & Evolution

Nicole Parr Emily Dewald-Wang

Phage infectivity seems more specific and short-lived than bacterial resistance

- Dewald-Wang et al. In prep

Yellow = *Erwinia*, Pink = *Pantoea*, Blue/Green = *Pseudomonas*, Black = *Stenotrophomonas*

- Dewald-Wang et al. *In prep*

Yellow = Erwinia, Pink = Pantoea, Blue/Green = Pseudomonas, Black = Stenotrophomonas

- Dewald-Wang et al. *In prep*

Britt Koskella

Assistant Professor, Integrative Biology UC Berkeley

Bacteria-phage interactions in the phyllosphere

- Koskella & Parr, Phil Trans B (2015)

- Koskella, American Naturalist (2014)