The temporal variability of black hole accretion disks

Chris Reynolds
(Astronomy/JSI, Univ.Maryland)

+

Phil Cowperthwaite
Drew Hogg
Cole Miller
Sean O'Neill

Outline

- Philosophy of this work
- Aperiodic variability
 - Structure beyond the power-spectrum
 - Assessing the "propagating fluctuation model"
- Quasi-periodic oscillations
 - Still no compelling model for HF-QPOs
 - Dynamo cycles seem generic origin of LF-QPOs?

Philosophy

- Paradigm : ang mtm transport due to MRI-driven turbulence (Balbus & Hawley)
- Philosophy of this work...
 - We CANNOT yet make robust predictions of L(v,t)... crucial physics missing (radiation, coronal physics...)
 - Hope : dynamics somewhat decouple from thermodynamics/radiation.
 - Approach: Use MHD simulations to ask <u>qualitative</u> questions about the <u>dynamics</u> of the disk.

Mushotzky et al. (2011)

Mushotzky et al. (2011)

Findings:

- Frequency dependent time lags (almost constant phase)
- Time lags can get very long (for $M=10M_{sun}$, $10^{-2}s=200r_g/c$)
- Often see log-normal variability

Poutanen (2000); Gilfanov et al. (2000); Nowak (2000); Uttley et al. (2011)

Coherence...

Computation of lags only makes sense if different realizations of the process give you a reproducible phase-lag. Assess this through the coherence function:

Break the light curve up into N segments. Then compute the **coherence function**...

$$\gamma^{2}(\omega) = \frac{|\langle S^{*}H \rangle|^{2}}{\langle |S|^{2} \rangle \langle |H|^{2} \rangle}$$

This real function of frequency ranges from 0 (completely incoherent) to 1 (completely coherent).

White dwarfs do it too!

Also show rms-flux relation and frequency-dependent time-lags

(Scaringi et al. 2013)

Simple 1-d accretion disk model with stochastic viscosity Let $v=v_0(1+\beta)$, β spatially uncorrelated gaussian process with temporal coherence time = local viscous time.

Noble & Krolik (2009)

Quasi-periodic oscillations (in brief!)

XTEJ1550-564; Rao et al. (2010)

Orbiting blobs/spirals

Alfven wave oscillations (Wang)

Accretion ejection instability (Tagger, Varniere...)

LT-induced precession of tilted disk (Fragile, Done...)

Dynamo cycles in MHD disks

... again, I'm sure I've missed many...

White dwarfs show very similar characteristics... clearly do not need GR or rad-dom disks to get LFQPOs!

MV Lyrae w/Kepler (Scaringi et al. 2012)

Conclusions

- MHD simulations are valuable tool to assess phenomenological variability models
- Aperiodic variability: Jury still out on propagating fluctuation model. Our MHD disk has ISCO accretion rate showing linear "rms-flux" relation, but accretion rate further out still Gaussian.
- QPOs: HFQPOs remain mysterious. Dynamo cycles are interesting possibility for LFQPOs (but then we couldn't tolerate truncated disks in low-hard states)