The Early Growth of Supermassive Black Holes in Cosmological Simulations: The Role of Advection

Michael Tremmel University of Washington

Collaborators: Fabio Governato, Tom Quinn, Marta Volonteri, Jillian Bellovary, James Wadsley

Why Cosmological Simulations?

- Cosmological simulations allow us to model the environment in which a galaxy is evolving
 - Merger history
 - Gas accretion
 - Large scale gravitational torques
- Need to simulate galaxies in a cosmological context if we want to understand the growth of SMBHs

credit: Fabio Governato

Michael Tremmel

- Cosmological Volumes must model processes on a very large range of scales
- The Black Hole/Accretion Disk system will not be resolved
- All that physics must be inserted as analytical prescriptions and "Free" subgrid parameters

Millennium Simulation

University of Washington

- Formation of black hole seeds
 - Where, when, at what mass?
- Accretion Rate
 - Unresolved on cosmological simulation scales
- AGN Feedback
 - How do black holes radiate energy? How does this energy get coupled to surrounding gas?
- BH tracking (i.e. advection)

Michael Tremmel

University of Washington

Monday, August 5, 2013

- Formation of black hole seeds
 - Where, when, at what mass?
- Accretion Rate
 - Unresolved on cosmological simulation scales
- AGN Feedback
 - How do black holes radiate energy? How does this energy get coupled to surrounding gas?
- BH tracking (i.e. advection)

Michael Tremmel

- BH Tracking: The Problem
 - BH accretion sensitive to position
 - Dynamical heating caused by low resolution
 - Inefficient dynamical friction when particles are too similar in mass to BH mass

University of Washington

- Different Advection Methods
 - Provide "advection force" in direction of
 - center of mass (Wurster & Thacker 2013, Okamoto et. al. 2008)
 - gas particle at the deepest potential (e.g. Springel et. al. 2005, Booth & Schaye 2009)
 - Force BH to have a high dynamical mass (Debuhr et. al. 2011)

University of Washington

Do We Want Advection?

- Disadvantages to Advection Methods
 - Artificial force can cause small, chaotic motions (Wurster & Thacker 2013)
 - Coupling to gas particles means the BH cannot exist in a void
 - Large dynamical masses affect the dynamics of the galaxy as well (Wurster & Thacker 2013)

Michael Tremmel

Do We Want Advection?

- Should we assume BHs always stay in the center of their halos?
 - Few dwarf galaxies found to host AGN
 - DM halos do not have a constant DM profile (Pontzen & Governato 2013)
 - DM profiles of small halos are highly cored (Governato et. al. 2010)
 - BHs can form in small halos in high density, dynamically interesting regions

Michael Tremmel

Do We Want Advection?

- Should we assume BHs always stay in the center of their halos?
 - Few dwarf galaxies found to host AGN
 - DM halos do not have a constant DM profile (Pontzen & Governato 2013)
 - DM profiles of small halos are highly cored (Governato et. al. 2010)
 - BHs can form in small halos in high density, dynamically interesting regions

University of Washington

Do We Need Advection?

- Unnecessary for high enough resolution simulations (e.g. Mayer et. al. 2007)
- Test Model: BH in an NFW halo with:
 - $M_{vir} = 10^{10} M_{sun}$
 - $M_{BH} = 10^6 M_{sun}$
 - BH initially at the center (0,0,0)
 - $M_{DM} \sim 7 \times 10^5 M_{sun}$ (low res) $M_{DM} \sim 2 \times 10^5 M_{sun}$ (high res)
 - BH velocity of 0, 10 km/s

University of Washington

Do We Need Advection?

 $V_{initial} = 0$

Michael Tremmel

Do We Need Advection?

 $V_{initial} = 10 \text{ km/s}$

University of Washington

- Successor to the very successful N-body+Smoothed Particle Hydrodynamics code, Gasoline
 - Well tested code used to study a wide variety of problems, e.g
 - Formation and evolution of dwarf galaxies
 - Gas accretion onto galaxies
 - Effects of stellar feedback and tidal torques on dark matter halos
 - Formation of disks and bulges
- ChaNGa has all the important physics in Gasoline (UV background, star formation and feedback, H₂ formation, metal line cooling, etc) but includes an updated SPH that resolves Kelvin-Helmholtz instabilities and achieves an order of magnitude higher scaling performance

Michael Tremmel

University of Washington

Monday, August 5, 2013

- "Zoomed-in" Simulations
 - Model a small piece of a larger volume at much higher resolution
 - Still get self consistent gas accretion and merger histories of galaxies
 - Keep the large scale dark matter distribution for tidal torques
- Advantage: Higher resolution
- Disadvantage: Won't get a very large statistical sample

Michael Tremmel

- "Zoomed-in" Simulations
 - Model a small piece of a larger volume at much higher resolution
 - Still get self consistent gas accretion and merger histories of galaxies
 - Keep the large scale dark matter distribution for tidal torques
- Advantage: Higher resolution
- Disadvantage: Won't get a very large statistical sample

Michael Tremmel

- "Zoomed-in" Simulations
 - Model a small piece of a larger volume at much higher resolution
 - Still get self consistent gas accretion and merger histories of galaxies
 - Keep the large scale dark matter distribution for tidal torques
- Advantage: Higher resolution
- Disadvantage: Won't get a very large statistical sample

Michael Tremmel

The Simulation

- I0 BHs with mass 10⁶ M_{sun} are placed at the center of the I0 largest halos at z = 6 (time ~ I Gyr)
- BHs accrete via Bondi-Hoyle accretion
- DM mass: 1.26 x 10⁵ M_{sun}

credit: Fabio Governato

Michael Tremmel

Do Our Black Holes Move?

Michael Tremmel

University of Washington

Monday, August 5, 2013

Open Questions and Future Work

- Look at the growth of black holes in a variety of different galaxies and environments
- Dynamics of black holes in galaxies
 - possible source of growth regulation in small halos?
 - What role is accretion playing?
- Seed Formation
 - When, where, and at what mass do black holes form? How does this affect early growth and dynamics of black holes?
 - Connect to early star formation (see: Bellovary et. al 2011)
- Explore new feedback and accretion algorithms

Michael Tremmel

References

- Bellovary, J. et. al. 2011, ApJ, 742, 13
- Booth C. M. and Schaye J., 2009, MNRAS, 398, 53
- Debuhr J., Quataert E., Ma C.-P., 2011, MNRAS, 412, 1341
- Devecchi, B. et. al. 2012, MNRAS, 421, 1465
- Governato, F., et. al. 2010, Nature, 463, 203
- Mayer, L. et. al. 2007, Science, 316, 1874
- Okamoto, T. et. al 2008, MNRAS, 385, 161
- Pontzen, A and Governato, F. 2013, MNRAS, 430 121
- Springel V., Di Matteo T., Hernquist L. 2005, MNRAS, 361, 776
- Wurster, J and Thacker, R.J. 2013, MNRAS, 431, 2513