Gas, stars and gravitational waves

on the main driver of supermassive black hole binaries path to coalescence

Elisa Bortolas

Main Collaborators: A. Sesana, A. Franchini, M. Bonetti, A. Gualandris, A. Lupi, M. Dotti, L.Mayer, P.Capelo, ...

BINARY22 - Kavli Institute for Theoretical Physics

Santa Barbara, April 7th, 2022

Massive black hole binaries

The path to coalescence ~40 years ago...

Begelman, Blandford and Rees 1980

Reference timescales: A few 100 Myr to a few Gyr

Elisa Bortolas, KITP, April 7 2022

...and the path to coalescence today

Reference timescales: A few 100 Myr to a few Gyr

Elisa Bortolas, KITP, April 7 2022

...and the path to coalescence today

Reference timescales: A few 100 Myr to a few Gyr

Real galaxies are complex environments

Real galaxies are complex environments

The LARGE scale inspiral

is the dynamical friction treatment good enough?

BHs distance from the centre

TORQUES MATTER! *Also at large scale*

TORQUES MATTER! Also at large scale

Doggy bag #1

The simple dynamical friction treatment for massive black holes inspiral may be poor in

realistic galaxies especially:

- At high z
- In irregular/barred galaxies

May I chip in...

5 cents for some discussion?

• How to model this stochasticity in inexpensive semi-analytical models for studying the binary population and merger rates?

Small scale (bound binary) evolution

Small scale (bound binary) evolution

LET'S HAVE THE MOST PESSIMISTIC APPROACH

• Stellar driven hardening

 $\frac{da_{\star}}{dt} \propto -a^2$

No nuclear star cluster M-sigma relation (Kormendy&Ho13,Merrit+09) Binary shrinking

$$\dot{a}_{\star} = -\frac{HG\rho}{\sigma} \, a^2$$

Quinlan96, Sesana+06, Sesana&Khan15

• Stellar driven hardening

Gravitational wave emission

 $\frac{da_{\rm GW}}{dt} \propto -a^{-3}$

 $\frac{da_{\star}}{dt} \propto -a^2$

Binary shrinking

Efficient

shrinking at

small scale

• Stellar driven hardening

Binary shrinking

• Gas-driven evolution $\frac{da_{gas}}{dt} \propto +a$ We
bind
exp

$$\dot{a}_{\rm gas} = 2.68 \frac{\dot{m}}{m} a$$

We assume binary **expansion**

• Gravitational wave emission

 $\frac{da_{\rm GW}}{dt} \propto -a^{-3}$

Efficient shrinking at small scale

When is the gas effective?

Some more assumptions: Equal mass binary; Binary eccentricity = 0 at all times

How do we model accretion?

• Fixed eddington ratio f_{Edd} so that $\dot{m} = f_{Edd} \dot{m}_{Edd} \propto m$ (the accretion rate grows linearly with the binary mass, and remains a fixed fraction of the Eddington accretion rate) NOTE THAT DIFFERENT ASSUMPTIONS (FIXED MDOT) FOR THE MASS ACCRETION RATE RESULT IN AN EVEN LESS EFFICIENT GAS-DRIVEN EXPANSION

Elisa Bortolas, KITP, April 7 2022

log(a)

When is the gas effective?

How do we model accretion?

• Fixed eddington ratio f_{Edd} so that $\dot{m} = f_{Edd} \dot{m}_{Edd} \propto m$ (the accretion rate grows linearly with the binary mass, and remains a fixed fraction of the Eddington accretion rate) NOTE THAT DIFFERENT ASSUMPTIONS (FIXED MDOT) FOR THE MASS ACCRETION RATE RESULT IN AN EVEN LESS EFFICIENT GAS-DRIVEN EXPANSION

Elisa Bortolas, KITP, April 7 2022

Bortolas+2021, ApjL, 918 L15

log(a)

Can the binary expand indefinitely?

NO! THE SELF GRAVITATING RADIUS

Franchini+21

Can the binary expand indefinitely?

NO! THE SELF GRAVITATING RADIUS

Franchini+21

$$R_{{
m sg}-7/45}^{\infty} f_{
m Edd}^{-22/45} m$$

Perego+09

 $R_{\rm sg} \sim 10^{-2} \, {\rm pc}$ for a 10^6 solar mass binary accreting at Eddington

Can the binary expand indefinitely?

NO! THE SELF GRAVITATING RADIUS

Elisa Bortolas, KITP, April 7 2022

Evolution for fixed *F*_{Edd}

at all times

Evolution for fixed *F*_{Edd}

Elisa Bortolas, KITP, April 7 2022

at all times

Bortolas+2021, ApjL, 918 L15

Different initial binary mass

Elisa Bortolas, KITP, April 7 2022

Inspiral timescale

Elisa Bortolas, KITP, April 7 2022

Inspiral timescale

Elisa Bortolas, KITP, April 7 2022

Doggy bag #2

- GAS AND STARS GENERALLY COEXIST!!
- Gas driven expansion does not dramatically impact the coalescence time of massive binaries

→ Expansion necessarily reverts into shrinking when the binary mass gets large enough owing to accretion: at that point, gravitational wave emission becomes dominant.

May I chip in...

another 5 cents for some discussions/ideas?

- This would imply expanding binaries would be observed at lower frequencies (PTAs)
- We should think of better simulations/works accounting for concurrent effects of stars and gas
- Would it be possible to use a similar approach in the framework of stellar binaries? [e.g. tides instead of stellar hardening and so on...]

