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, Predict evolution!
e.g. how long until f = 100% (“fixation”) ?

Measure
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Questions: Do dynamics eventually become “simple™ again?

or do new complications arise that require revisions to the model!



Mutant frequency, f(t) (%)

But how relevant are these models, really?
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Question:

What are the important parameters (“knobs")
that control these different behaviors?
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Question:

How do fitness mutations change this picture!?
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Questions: How does evolution alter community structure?
How does the community alter evolutionary dynamics?
Can we make connections to sequence data’
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empirical data from natural microbial communities

(idedlly, inspire new laboratory model systems)

( )

But few observations of evolution so far
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(UCSF)
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Preliminary findings and future questions

|. Across-host genealogical signhatures challenge existing pop gen models

What models can produce these patterns?

Global signatures of adaptation? or stasis?

2. Gut bacteria can evolve within hosts on human-relevant timescales

Is linkage as important as in experimental evolution?

Correlations w/ changes in species abundance? w/ evolution in co-colonizing species?

3. Bacterial recombination plays greater role

Will require new theoretical models of selection + linkage + recombination /| HGT
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In rapidly evolving populations, fates of mutations
are strongly influenced by dynamical processes,
in addition to their inherent biological effects.
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In simple ecological settings, rapid evolution
can also play a important role in determining
the structure of the community, and vice versa.

Individuals

-
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Integrated approach of empirically-guided theory
and theoretically-motivated data analysis and
experimental design Is a promising path toward
understanding these processes.
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LTEE Sequencing

Mike McDonald (Monash)
Jeff Barrick (UT)
Rich Lenski (MSU).
Michael Desai (Harvard)

Good*, McDonald* et al
(Nature, 2017)

Thanks!

Eco-evolutionary theory
Stephen Martis,

Oskar Hallatschek
(UC Berkeley)

Good et al, (in prep)

Evolution in the microbiome

Nandita Garud, Katie Pollard (UCSF)
M. Roodgar;, M. Snyder (Stanford)

Garud*, Good*, et al
Evolutionary dynamics of bacteria in the

gut microbiome within and across hosts
(biorXiv 210955)

Other collaborators: [vana Cvijovic (Harvard), Matt Melissa (Harvard), Genya Frenkel (Whitehead), Dan Rice (Chicago), Elizabeth
Jerison (Stanford), Daniel Balick (HMS), Richard Neher (Biozentrum), Aleksandra Walczak (ENS), Igor Rouzine (Gladstone)

Miller Institute for Basic Research in Science, University of California, Berkeley



Inferring clade dynamics with hidden Markov models

Basic idea: individual mutations noisy — avg together to measure clade freg

Problem: which mutations to average, which times to average!?
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(goes extinct)

Solution: infer with custom hidden Markov model (cladeHMM)
— like clustering, but phylogenetically-aware

fixed in
major clade

mutation
in major clade

E. g. ancestral
(not fixed)

state

Good*, McDonald* et al (Nature, 2017)



Rapid adaption and clonal interference within clades
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Total mutations detected (x 103)

Fraction mutations >t

Parallelism at the genetic level
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Patterns of epistasis and contingency at the gene level
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Patterns of genetic diversity within hosts

A Sample 1 (D=208)
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B Sample 2 (D=138)
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Within-sample polymorphism (0.2 < £<0.8)
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Bacteroides vulgatus
Bacteroides uniformis
Alistipes putredinis
Bacteroides ovatus
Bacteroides stercoris
Eubacterium rectale
Bacteroides thetaiotaomicron
Parabacteroides merdae
Parabacteroides distasonis
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Akkermansia muciniphila

Garud*, Good*, et al (biorxiv 2017)



Patterns of genetic divergence across hosts

A
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Short-term succession within hosts
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Putative model of within-host evolution
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Garud*, Good*, et al (biorxiv 2017)



