# **Collective Motion** in Populations of Colloidal Bots



Denis Bartolo

Antoine Bricard (PhD), Jean-Baptiste Caussin (PhD), Nicolas Desreumaux (PhD), Olivier Dauchot (EC2M, ESPCI)









Sardines: 7km-long school



Sardines: 7km-long school



Locusts: 14km-long swarm



Locusts: 14km-long swarm

# Similar large-scale behavior



National geographic



Steve Dunleavy



National geographic



National geographic

### Different interactions at the individual level



National geographic



Steve Dunleavy



National geographic



National geographic

# Physicists' comfort zone

## Flocking



- ViEmergence of directed motion?How is the rotational symmetry broken?
- **T**i Self-organization into "localized" groups? How is the translational symmetry broken?

## Flocking



Vi

Emergence of directed motion? How is the rotational symmetry broken?

**T**<sub>i</sub> Self-organization into "localized" groups? How is the translational symmetry broken?

# Vicsek model(s)

Self-propelled

Polar/Alignment interaction

 $\mathbf{v}_i = v_0 \mathbf{p}_i$ 

 $\theta_i(t+1) = \langle \theta_i(t) \rangle_R + \xi_i(t)$ 



#### Polar active matter

# Hallmarks of polar active matter



see e.g. Vicsek and Zafeiris Physics 2012 Toner, Tu and Ramaswamy 2005

## Hallmarks of polar active matter



see e.g. Vicsek and Zafeiris Physics 2012 Toner, Tu and Ramaswamy 2005

#### Hallmarks of polar active matter

 $\langle \rangle$ 

Disordered gas  $\checkmark$  Swarms  $\checkmark$  Polar liquid Disordered gas  $\checkmark$  Swarms  $\checkmark$  Polar liquid Disordered  $\checkmark$  Swarms  $\checkmark$  Polar liquid  $\land$  Polar liquid  $\land$  Polar liquid  $\checkmark$  Polar liquid  $\land$  Polar



**Giant Number Fluctuations** 

 $\Delta N \sim \langle N \rangle^{\alpha}$  $\alpha > 1$ 

see e.g. Vicsek and Zafeiris Physics 2012 Toner, Tu and Ramaswamy 2005 The hallmarks of active matter

# $\Im$ $N_{\text{Theories}} \gg N_{\text{Experiments}}$

### The hallmarks of active matter

# $3 \qquad N_{\text{Theories}} \gg N_{\text{Experiments}}$

density waves I

supplement to Fig. 2C

40 x

filament density:  $\rho = 25 \,\mu m^2$ labeling ratio: R = 1:320



Baush's group Nature 2010



# The hallmarks of active matter

# $N_{\mathrm{Theories}} \gg N_{\mathrm{Experiments}}$

#### ~0 model system until 2010

density waves I

supplement to Fig. 2C

40 x

filament density:  $\rho = 25 \,\mu m^2$ labeling ratio: R = 1:320



Baush's group Nature 2010



Polar-liquid phase?

### Large-scale population dynamics

# Requirements

- N>>>1 Small (Paris: 12 000 €/m²)
- Quantitative measurements (tracking)
- Known polar interactions

# Self-propelled particles: 1st trick



G. Quincke, Ann. Phys. Chem. 59, 417 (1896).







# Self-propelled particles: 1st trick

#### **Quincke Rotation**

G. Quincke, Ann. Phys. Chem. 59, 417 (1896).



# Self-propelled particles: 2nd trick





# Self-propelled particles: 2nd trick





## Self-propelled colloids

PMMA colloids Hexadecane oil+AOT salt Microfluidic channel:



# Colloidal rolling robots



# Colloidal rolling robots



# Colloidal rolling robots



# $v_0 = 1.5 \,\mathrm{mm/s}$

# Self-propulsion: isotropic and tunable



### Collective motion?

# Periodic boundary conditions



### Collective motion?

# Periodic boundary conditions







$$\phi \sim 10^{-2}$$





$$\phi \sim 10^{-2}$$

# Flocking

B



 $\phi \sim 10^{-2}$ 

Bricard, Caussin, Desreumaux, Dauchot, and Bartolo, Nature (2013)

# Flocking

В



 $\phi \sim 10^{-2}$ 

Bricard, Caussin, Desreumaux, Dauchot, and Bartolo, Nature (2013)

# Polar-liquid phase



# $\phi \sim 1.8 \times 10^{-1}$

# Polar-liquid phase



# $\phi \sim 1.8 \times 10^{-1}$

# Polar-liquid phase



# $\phi \sim 1.8 \times 10^{-1}$

## Phase behavior



Does NOT depend on the field amplitude

### Colloidal swarms: Polar bands





Exponential tail  $\phi_\infty \sim \phi_c$ 

 $L_{\text{band}} \nearrow \phi_0 \nearrow$ 

### Colloidal swarms: Polar bands





Exponential tail  $\phi_\infty \sim \phi_c$ 

 $L_{\text{band}} \nearrow \phi_0 \nearrow$ 

# No intrinsic length scale



« Phase coexistence »

# Polar liquid



#### Spontaneously flowing liquid

# Polar liquid



#### Spontaneously flowing liquid

# Polar liquid: Structure



Weakly correlated "liquid"

# Polar liquid: Density fluctuations



No Giant-Number Fluctuations !

# Equations of motion

Stokes equation

- + Maxwell equation
- + outstanding student



# Equations of motion



$$\dot{\mathbf{r}}_j = v_0 \hat{\mathbf{p}}_j$$

#### constant speed

 $\dot{\theta}_j = -\frac{\partial}{\partial \theta_j} \sum_{i \neq j} \mathcal{H}_{\text{eff}}(\mathbf{r}_j - \mathbf{r}_i, \hat{\mathbf{p}}_i, \hat{\mathbf{p}}_j) + \xi_j(t) \quad \text{effective potential interaction}$ 

# Hydrodynamics does matter

$$\dot{\mathbf{r}}_{j} = v_{0}\mathbf{p}_{j}$$
$$\dot{\theta}_{j} = -\frac{\partial}{\partial\theta_{j}}\sum_{i\neq j}\mathcal{H}_{\text{eff}}(\mathbf{r}_{j} - \mathbf{r}_{i}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}) + \xi_{j}(t)$$

#### **Alignement interactions**

$$\mathcal{H}_{\text{eff}}(\mathbf{r}, \hat{\mathbf{p}}_i, \hat{\mathbf{p}}_j) = -A(r)\,\hat{\mathbf{p}}_i \cdot \hat{\mathbf{p}}_j \ -B(r)\hat{\mathbf{r}} \cdot \hat{\mathbf{p}}_j \ -C(r)\hat{\mathbf{p}}_i \cdot (2\hat{\mathbf{r}}\hat{\mathbf{r}} - \mathbf{I}) \cdot \hat{\mathbf{p}}_j$$



^

#### Suppression of the giant number fluctuations

 $\mathcal{H}_{\text{eff}}(\mathbf{r}, \hat{\mathbf{p}}_i, \hat{\mathbf{p}}_j) = -A(r) \, \hat{\mathbf{p}}_i \cdot \hat{\mathbf{p}}_j - B(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}_j - C(r) \hat{\mathbf{p}}_i \cdot (2\hat{\mathbf{r}}\hat{\mathbf{r}} - \mathbf{I}) \cdot \hat{\mathbf{p}}_j$ 

Damping of the splay modes

Brotto, Caussin, Lauga, and Bartolo, Phys Rev Lett (2013)









with

Antoine Bricard Jean-Baptiste Caussin Nicolas Desreumaux (Experiements) (Theory) (Experiements)

#### 8

#### Olivier Dauchot

#### (EC2M,ESPCI)



with

Antoine Bricard Jean-Baptiste Caussin Nicolas Desreumaux (Experiements) (Theory) (Experiements)

#### 8

#### Olivier Dauchot

#### (EC2M,ESPCI)

