Collective Motion in Populations of Colloidal Bots

Denis Bartolo

Antoine Bricard (PhD), Jean-Baptiste Caussin (PhD), Nicolas Desreumaux (PhD), Olivier Dauchot (EC2M, ESPCI)

\mathbf{C} oherent directed motion

Sardines: 7km-long school
\mathbf{C} oherent directed motion

Sardines: 7km-long school

Coherent directed motion

Locusts: 14km-long swarm

Coherent directed motion

Locusts: 14km-long swarm

Similar large-scale behavior

Steve Dunleavy

National geographic
National geographic

Different interactions at the individual level

Steve Dunleavy

National geographic

National geographic

Physicists' comfort zone

$\mathbf{V i}_{\mathbf{i}} \quad$ Emergence of directed motion?
$\mathbf{r i}_{\mathbf{i}}$ Self-organization into "localized" groups?
How is the translational symmetry broken?

$\mathbf{V}_{\mathbf{i}}$
Emergence of directed motion? How is the rotational symmetry broken?
$\mathbf{r i}_{\mathbf{i}}$ Self-organization into "localized" groups?
How is the translational symmetry broken?

$$
\mathbf{v}_{i}=v_{0} \mathbf{p}_{i}
$$

$$
\theta_{i}(t+1)=\left\langle\theta_{i}(t)\right\rangle_{R}+\xi_{i}(t)
$$

Polar active matter

Hallmarks of polar active matter

Hallmarks of polar active matter

Hallmarks of polar active matter

$N_{\text {Theories }} \gg N_{\text {Experiments }}$

The hallmarks of active matter

3
$N_{\text {Theories }} \gg N_{\text {Experiments }}$

The hallmarks of active matter

3

$N_{\text {Theories }} \gg N_{\text {Experiments }}$

~0 model system until 2010

Polar-liquid phase?

Large-scale population dynamics

Requirements

- $N \ggg 1$ Small (Paris: 12000 efm)
- Quantitative measurements (tracking)
- Known polar interactions

Quincke Rotation

Quincke Rotation

G. Quincke, Ann. Phys. Chem. 59, 417 (1896).

$\boldsymbol{\Omega} \sim \mathbf{P} \times \mathbf{E}$

Self-propelled particles: 2nd trick

Self-propelled particles: 2nd trick

PMMA colloids
Hexadecane oil+AOT salt

Microfluidic channel:
TO coated glass

Colloidal rolling robots

Colloidal rolling robots

Colloidal rolling robots

\checkmark

Collective motion?

Periodic boundary conditions

Collective motion?

Periodic boundary conditions

Flocking

Flocking

Focking

Bricard, Caussin, Desreumaux, Dauchot, and Bartolo, Nature (2013)

Focking

Bricard, Caussin, Desreumaux, Dauchot, and Bartolo, Nature (2013)

Does NOT depend on the field amplitude

Colloidal swarms: Polar bands

Exponential tail

$$
\phi_{\infty} \sim \phi_{c}
$$

$$
L_{\text {band }} \nearrow \phi_{0} \nearrow
$$

Colloidal swarms: Polar bands

Exponential tail

$$
\phi_{\infty} \sim \phi_{c}
$$

$$
L_{\text {band }} \nearrow \phi_{0} \nearrow
$$

No intrinsic length scale

«Phase coexistence»

Spontaneously flowing liquid

Spontaneously flowing liquid

Weakly correlated "Iliquid"

Polar liquid: Density fluctuations

No Giant-Number Fluctuations !

Equations of motion

Stokes equation

+ Maxwell equation
+ outstanding student

Equations of motion

$$
\dot{\mathbf{r}}_{j}=v_{0} \hat{\mathbf{p}}_{j}
$$

constant speed
$\dot{\theta}_{j}=-\frac{\partial}{\partial \theta_{j}} \sum_{i \neq j} \mathcal{H}_{\text {eff }}\left(\mathbf{r}_{j}-\mathbf{r}_{i}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)+\xi_{j}(t)$ effective potential interaction

$$
\begin{aligned}
& \dot{\mathbf{r}}_{j}=v_{0} \hat{\mathbf{p}}_{j} \\
& \dot{\theta}_{j}=-\frac{\partial}{\partial \theta_{j}} \sum_{i \neq j} \mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}_{j}-\mathbf{r}_{i}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)+\xi_{j}(t)
\end{aligned}
$$

Alignement interactions

$$
\mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)=-A(r) \hat{\mathbf{p}}_{i} \cdot \hat{\mathbf{p}}_{j}-B(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}_{j}-C(r) \hat{\mathbf{p}}_{i} \cdot(2 \hat{\mathbf{r}} \hat{\mathbf{r}}-\mathbb{I}) \cdot \hat{\mathbf{p}}_{j}
$$

Hydrodynamics does matter

Suppression of the giant number fluctuations

$$
\mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)=-A(r) \hat{\mathbf{p}}_{i} \cdot \hat{\mathbf{p}}_{j}-B(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}_{j}-C(r) \hat{\mathbf{p}}_{i} \cdot(2 \hat{\mathbf{r}} \hat{\mathbf{r}}-\mathbf{I}) \cdot \hat{\mathbf{p}}_{j}
$$

Destroying the polar liquid phase

