Motion coordination and information transmission in bio-groups

From frightened fish to mating mosquitoes

KITP: Active Processes in Living and Nonliving Matter

> Derek A. Paley
> Willis H.Young Associate Professor Collective Dynamics and Control Laboratory Department of Aerospace Engineering \& Institute for Systems Research
> University of Maryland, USA
> dpaley@umd.edu

13 February 2014

Overview of my research in bio-groups

Goal: Design and validate quantitative models of collective motion in groups of fish and mosquitoes

Objectives: (I) apply tools from estimation theory and computer vision to reconstruct movement data; (2) use these data to construct dynamic models; and (3) conduct behavioral experiments to test model predictions

Outline of talk

I. Information transmission in startled fish schools
(Sachit Butail,Amanda Chicoli, Sheryl Coombs @ BGSU)
2. Motion coordination in mosquito mating swarms
(Sachit Butail, Daigo Shishika, Nick Manoukis @ NIH)

Startle-response behavior in fish

Eaton, I977

Classical model fails to predict the number of fish responding

Godin et al., I988

A fish school can transmit information

Radakov, 1973

Cooperative threat detection

- Aim: Quantify the benefits of schooling in a signal-detection framework that distinguishes bias and sensitivity

- Approach: Use an artificial threat to startle a school whose density is manipulated by school size and whose polarization is manipulated by an external flow

Tracking two fish with occlusion

Fish orient upstream in flow (rheotaxis)

No flow

Flow

... and the distribution of neighbor position changes

No flow

Flow

Startle response to visual fright stimulus

No flow
Flow

Evidence for internal transmission of information

Experimental finding: Number of fish responding changes in flow

Flow

No flow

Probabilistic model predictions

A time-dependent model of startle response captures the probability of direct detection, indirect detection, and false alarms.
$P_{i}(t)=1-\left(1-P_{\uparrow}^{(\text {far })}\right)\left(1-P^{(\text {sus })} P_{i}(t-1)\right) \prod_{j \in \mathcal{N}_{i}(t)}\left(1-P^{(\text {int })} P_{j}(t-1)\left(1-P_{i}(t-1)\right)\right)$
Probability of false alarm

Probability of sustaining a startle

Probability of internal information transfer

Probability of response
Neighbors of fish i at time t by fish i at time t

$$
P_{i}(0)=P^{(e x t)} \longleftarrow \begin{gathered}
\text { Probability of detection } \\
\text { of external threat }
\end{gathered}
$$

Results from fitting model output to data

Are flow signals produced by the movements of neighboring fish masked by the flow, inhibiting the transmission of hydrodynamic information?

Outline of talk

I. Information transmission in startled fish schools

(Amanda Chicoli, Sheryl Coombs @ BGSU)

2. Motion coordination in mosquito mating swarms

(Daigo Shishika, Sachit Butail, Nick Manoukis @ NIH)

Female Anopheles gambiae are world's deadliest animal

Graduate student Sachit Butail filming in Mali (2010)

Male trajectories

black $=$ single male

blue = swarm centroid

Velocity autocorrelation model

2nd-order model fits

"Okay, but aren't they interacting?"

Swarming model without local interaction

Correlation-induced interaction graph

- Males form synchronized subgroupscwhose size and members change dynamically in time (real data)
- Link arrows indicate presence of uni- and bi-directional interactions

Interactive swarm model

- Swarming model without interaction: damped spring between each insect and swarm centroid
- Swarming model with interaction: include velocity damper between interacting insects

Swarming model with local interaction fits data better

Six mating events

- Female - Real male - Simulated male

Collective behavior in bio-groups

Summary: Tools from computer vision and nonlinear estimation have yielded 3D kinematics of
-schooling fish (up to eight)
-swarming mosquitoes (more than fifty)
Ongoing work: Analysis of trajectory data is yielding insights via
-dynamic modeling of collective behavior
-manipulative experiments to validate models

- Manipulative experiments to evaluate the sensory basis for how schooling fish transmit and receive social information
- Approach: Sensory deprivation experiments, robotic fish

Lateral line

Visual

V+ school with one V - fish (red)

Pilot experiment: Manipulating wind speed (kind of works)

Experimental setup

3D fish-tracking system

Generative modeling

Shape reconstruction

Swarming and mating in An. gambiae

Objective: To apply tools from engineering to study mating behavior in the field:

- What happens in swarms in populations of mosquitoes that are responsible for most of the human death caused by malaria?
- Female behavior in males swarms may not be random, but do they select mates?
- Do male flight patterns and/or position in the swarm relates to mating success?

Impact: Answers may influence vector control methods that rely on releases of sterile males

3D (mosquito) tracking system

supervised tracking

Horizontal vs. vertical speed

black $=$ all males \quad red $=$ single female

But what about the female?

