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‣ Objectives: (1) apply tools from estimation theory 
and computer vision to reconstruct movement 
data; (2) use these data to construct dynamic 
models; and (3) conduct behavioral experiments to 
test model predictions

Overview of my research in bio-groups

Goal: Design and validate quantitative models of 
collective motion in groups of fish and mosquitoes



Outline of talk

1.  Information transmission in startled fish schools  

(Sachit Butail, Amanda Chicoli, Sheryl Coombs @ BGSU)  

2.  Motion coordination in mosquito mating swarms 

(Sachit Butail, Daigo Shishika, Nick Manoukis @ NIH)



Startle-response behavior in fish70 R. C. EATON AND OTHERS
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Fig. i. Dorsal view silhouettes offish during startle behaviour: (a) trout, (6) goldfish, (c) zebra-
fish, (d) catfish, («) marbled hatchetfish, (/) chaxacid, (g) black ghost, (h) garfish, (<) calico
rockfish, (J) spiny eel. Silhouettes are drawn at 5 msec intervals beginning 5 msec before
onset of the vibrational stimulus. Successive silhouettes were drawn after moving the figure
a standard distance to the left. The first horizontal bar above each species indicates the fast-
body-bend, the second bar, the return-flip. Note that the general characteristics of the
responses in (a-h) are similar except that the hatchetfish (<) shows the effects of a rather in-
flexible body on the response and the garfish (h) did not give the return-flip within the 100 msec
test period. Rockfish (1) gave a response which consisted of a weak turn to one side followed by
a body bend to the other. The spiny eel (j) responded by retracting its head.

(1974) for the adult zebrafish. As seen from Fig. ib, c and further substantiated in
Figs. 2-4 this startle response is divided into two phases. The initial phase consists
of a short-latency, unilateral contraction of the trunk and tail. This contraction results
in the fish assuming a C-like shape with both the head and tail displaced to one side.
This is the most constant phase of the response and we name it the 'fast-body-bend'
(Fig. ib,c). The fast-body-bend is followed by the second phase which consists of
a more variable movement pattern resulting from a straightening of the tail. During
this phase the two species were propelled on the average 0-98 and 0*97 L (body
lengths) from their initial position (Fig. 2). This variable, second phase we term the
'return-flip' (Fig. ib, c).

Figs. z(ai) and 2(61) show the displacement pathways taken by the rostral-most
part of the head during the response. The initial position of the fish (dotted silhouette)
and direction of the fast-body-bend were standardized to facilitate comparisons. There
is an initial period of about 15-20 msec during which the response pattern is stereo-
typed, and the head follows the same pathway from trial to trial. To further illustrate
the stereotyped pathway, Fig. 3 shows in larger scale each of the data points in the
first 35 msec of the six responses of the goldfish. The initial stereoytpic phase (first

Eaton, 1977

~100 ms



Classical model fails to predict 
the number of fish responding36 

Shoal size 

Fig. 3. Mean (± SE) number of tetras exhibiting a startle response to the stimulus light 
as a function of shoal size. Each mean is based on log 1 (Y + 1) transformed data 
obtained from 10 replicate trials. The observed relationship was obtained by a least- 
squares polynomial regression. The expected relationship was calculated on the basis of 

the signal detection model explained in the text (equation 2). 

the body of a nearby conspecific. Consequently, observed startle 

responses in the present study resulted from either signal detection 

directly or indirectly in response to a fleeing neighbour. 

Discussion 

The present study demonstrated that corporate vigilance of a shoal of fish 
increases curvilinearly at a diminishing rate with increasing shoal size 
and that the flight response is socially transmitted among shoal members, 
particularly in larger shoals, as predicted by the hypothetical early warn- 

ing function of group living (PULLIAM, 1973 ; TREISMAN, 1975; LAZARUS, 
1979). 

We have assumed that the presence of a startle (flight) response 
indicates stimulus detection and, more importantly, that the absence of 
such a response indicates failure to detect the alarm stimulus (cf Intro- 

duction). The effects of habituation on stimulus detection and the 

possibility of false alarm responses significantly contributing to the 
observed detection probabilities were ruled out. Therefore, the detection 

probabilities shown in Fig. 2 represent the corporate perceptual abilities 
of tetra shoals of different sizes. The form of the relationship between 

probability of detection and shoal size was one of diminishing returns, as 

predicted by equation 1. Although this relationship probably applies to 

Godin et al., 1988

Observed

A new model of information transmission in cooperative agents

Derek Paley

September 25, 2013

Let P
i

be the probability that agent i detects and responds to an external signal, where i =

1, . . . , N and N is the number of agents in the group. Assuming P
i

= P for all i, classical predictions
of signal detection theory [3, 2] predict the expected probability of threat detection, P

D

, of at least

one agent in the group to be

P
D

= 1� (1� P )

N . (1)

Classical theory [3, 2] also predicts the expected number of agents responding, N
D

, to be

N
D

=

NX

i=1

P
i

= NP, (2)

which underestimates the observed number of responding fish in a school [1]. The discrepancy

between the predicted and observed number of responding agents may be a result of social trans-

mission of information in the group, an idea we explore further here.

An alternate model for P
i

is to include the probability of indirect detection through interactions

with other agents. An important aspect of this model is the inclusion of time t. We also include a

fixed false alarm rate P (far)
. Let P

i,j

be the probability that agent i perceives (and responds to)

a cue from agent j and P
i,i

be the probability that agent i sustains the response state from one

time step to the next. The notation N
i

denotes the neighbor set of i, which is the set of agents

that generate signals received by agent i. We define P
i

(t) to be the probability at time t that agent
i experiences a false alarm, sustains a response from the previous time step t � 1, or detects and

responds to a neighboring agent that is in the response state at time step t� 1. That is,

P
i

(t) = 1� (1� P (far)
)(1� P

i,i

P
i

(t� 1))

Y

j2Ni(t)

(1� P
i,j

P
j

(t� 1)(1� P
i

(t� 1))), (3)

where P
i

(0) = P (ext)
i

= P (ext)
for all i is the probability that agent i directly perceives an external

cue at time step t = 0.

Next we impose some simplifying assumptions on (3) in order to make its analysis tractable.

First, let P
i,j

= P (int)
for all pairs i and j be the probability of signal transmission between

neighbors, and P
i,i

= P (sus)
be the probability of sustained response. Then P

i

(t) becomes

P
i

(t) = 1� (1� P (far)
)(1� P (sus)P

i

(t� 1))

Y

j2Ni(t)

(1� P (int)P
j

(t� 1)(1� P
i

(t� 1))). (4)
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by fish iNumber responding	


to external threat
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Not (yet)	

startled

Startled	

fish

Radakov, 1973

A fish school can transmit information
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 Cooperative threat detection

‣ Aim: Quantify the benefits of schooling in a signal-detection 
framework that distinguishes bias and sensitivity

‣ Approach: Use an artificial threat to startle a school whose 
density is manipulated by school size and whose polarization is 
manipulated by an external flow 





Fish orient upstream in flow 
(rheotaxis)
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… and the distribution of 
neighbor position changes

No flow Flow
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Startle response to visual fright stimulus

No flow Flow



Evidence for internal 
transmission of information



Experimental finding: Number of 
fish responding changes in flow
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A time-dependent model of startle response captures 
the probability of direct detection, indirect detection, 
and false alarms.

Probabilistic model predictions

Neighbors of	

fish i at time t

A new model of information transmission in cooperative agents
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Let P
i

be the probability that agent i detects and responds to an external signal, where i =

1, . . . , N and N is the number of agents in the group. Assuming P
i

= P for all i, classical predictions
of signal detection theory [3, 2] predict the expected probability of threat detection, P

D

, of at least

one agent in the group to be

P
D

= 1� (1� P )

N . (1)

Classical theory [3, 2] also predicts the expected number of agents responding, N
D

, to be

N
D

=

NX

i=1

P
i

= NP, (2)

which underestimates the observed number of responding fish in a school [1]. The discrepancy

between the predicted and observed number of responding agents may be a result of social trans-

mission of information in the group, an idea we explore further here.

An alternate model for P
i

is to include the probability of indirect detection through interactions

with other agents. An important aspect of this model is the inclusion of time t. We also include a

fixed false alarm rate P (far)
. Let P

i,j

be the probability that agent i perceives (and responds to)

a cue from agent j and P
i,i

be the probability that agent i sustains the response state from one

time step to the next. The notation N
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denotes the neighbor set of i, which is the set of agents
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i

(t) to be the probability at time t that agent
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for all i is the probability that agent i directly perceives an external

cue at time step t = 0.

Next we impose some simplifying assumptions on (3) in order to make its analysis tractable.

First, let P
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= P (int)
for all pairs i and j be the probability of signal transmission between

neighbors, and P
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Outline of talk

1.  Information transmission in startled fish schools  

(Amanda Chicoli, Sheryl Coombs @ BGSU)  

2.  Motion coordination in mosquito mating swarms 

(Daigo Shishika, Sachit Butail, Nick Manoukis @ NIH)



Female Anopheles gambiae are world’s deadliest animal

Male swarm



Graduate student Sachit Butail filming in Mali (2010)





Male trajectories

black = single male blue = swarm centroid
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damped&spring&
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Swarming model without local 
interaction
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Simulated random walk
Simulated swarm without interaction
Real swarm
Male−Female couples

Figure 2: Correlation values for real and simulated swarms. Probability of the correlation value calculated for
simulated swarms, 11 real swarms, and 8 coupling flights. The curves are normalized to have unit integral. The vertical
dashed line passing through the orange dot indicates the threshold for the correlation value. The noisiness of the red curve
is due to the relatively small number of data points.

window. Therefore, we choose T = 10 (0.4 s), which is greater than the interval between tight turns. The quan-

tities r̃ji(�m, t) and r̃ij(m, t) are used to obtain the correlation value Cij(t). (see Methods) We calculate the

instantaneous correlation value for every pair of mosquitoes in the swarm. Figure 2 shows the probability density

function for this correlation value taken from 11 swarming sequences (approximately 500,000 data points). These

data are compared to simulated data from random walk model and swarming without interaction, and to field

data from 8 coupling events (about 200 data points). Construction of the simulated swarm is in Methods.

Comparing the simulated swarm and real swarm to the simulated random walk, we see that the first two

have their peak-probability correlation value near zero, whereas the latter has an almost uniform distribution.

Although the simulated swarm without interaction captures some of the features of the real swarm, they di↵er at

high correlation values where the real swarm exhibits elevated probability and the simulated swarm does not. To

distinguish coordinated flight, we define the threshold on correlation using the intersection of the green curve (real

swarm) and the red curve (male-female couples), because this choice ensures the minimum error rate in classifying

these two. [5] We label pairs that have correlation value greater than 0.8 as interacting, otherwise we label them

as non-interacting.

For an interacting pair, the optimal lag value indicates the leader-follower roles [9]. A positive lag indicates

that mosquito i is following the motion of mosquito j. (Note that this does not mean i is chasing j; simply that i

is matching its direction of motion to that of j.) The leader-follower analysis, combined with the cross-correlation

threshold, induces a directed graph [9] that represents the instantaneous interaction topology in the swarm. Each

node represents a mosquito and the edges are directed from the leaders to the followers in order to show the direc-

tion of information transmission. Figure 3 depicts the instantaneous interaction graph for a real swarm. Note that

although the males in the simulated swarm are not interacting, pairs with correlation value above the threshold

are still classified as interacting. We treat this as “accidental coordination,” and this misclassification occurs in

5% of all data points from the simulation.

4



Correlation-induced interaction graph

• Males form synchronized 
subgroupscwhose size and 
members change dynamically in 
time (real data)	


• Link arrows indicate presence of 
uni- and bi-directional interactions 
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Figure 3: Visualization of interaction network. a, Visualization of interaction graph generated by software “SoNIA”
[McFarland, D., BenderedeMoll, S., SoNIA: Social Network Image Animator. Available from http://www.stanford.edu/group/sonia.].
The figure shows an instantaneous interaction graph, so the interval is 0 here. Each node represents a mosquito and each
directed edge represents an directional interaction. The size of a node is proportional to the number of edges that are directed
to it. Note that the distance in this figure does not represent Euclidean distance. Nodes without edges are located randomly.
b, Interval graph. Directed edges are shown at the starting and the ending point of each pairwise interaction. The thick line
indicates that the mosquito is in a interaction state.

a b c

d e

Figure 4: Features of interaction and network. a, Probability density of distance between two males, calculated for
interacting and non-interacting pairs. b, Probability of interacting with kth-neighbor. c, Duration of interaction, i.e., the
period of time that the correlation value stays above the threshold. d, Probability of the size of subgroup in which a male
is included at each moment for subgroup size greater than one. The result is compared with the reference null model with
randomized edges. e, Number of subgroups versus swarm size. The black line is a linear regression passing through the
origin.

pairs with correlation value above the threshold are still classified as interacting; the area under the green curve

above the threshold, which corresponds to the misclassified data, accounts for 5% of the whole area under the curve.

Features of pairwise interaction and interaction network. Figure 4a plots the probability density of the

distance between two males. The curve for interacting pairs lies to the left of the curve for non-interacting pairs,

which indicates that interacting pairs fly closer together than non-interacting pairs. Figure 4b shows the neighbors

with which each male is interacting, according to their relative proximity. When a male is interacting with more

than one other male at the same time, it shows the one with the greatest correlation value. The probability of

interaction decreases as the neighbor number increases. Figure 4c shows the duration of interaction (i.e., the

period of time that the correlation value stays above the threshold). The resolution of this analysis is identical to

the video frame rate (0.04 s).

A subgroup is a set of nodes that are connected to each other by edges; each node in a subgroup is reach-

able from any other node, treating the edges as undirected. For a graph whose directed edges correspond to the

correlation time lag, for example, if i is following j and j is following k, then {i, j, k} are in the same subgroup.

5



White&Noise (if$in$non'interac-ng$state)$

(if$in$interac-ng$state)$

Interactive swarm model

damped&spring&

• Swarming model without interaction: damped 
spring between each insect and swarm centroid	


• Swarming model with interaction: include 
velocity damper between interacting insects
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Simulated random walk
Real swarm
Male−Female couples
Simulated swarm without interaction
Simulated swarm with interaction

Swarming model with local 
interaction fits data better



Six m
ating events

blue =
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ale
red =
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purple =
 couple





Six mating events

close encounters



•"Female"""•"Real"male"""•"Simulated"male"

more work to be done…



Collective behavior in bio-groups

Summary: Tools from computer vision and 
nonlinear estimation have yielded 3D kinematics of	


-schooling fish (up to eight)	


-swarming mosquitoes (more than fifty)	


Ongoing work: Analysis of trajectory data is 
yielding insights via	


-dynamic modeling of collective behavior	


-manipulative experiments to validate models



‣ Manipulative experiments to evaluate the sensory basis for 
how schooling fish transmit and receive social information

!

Lateral line

‣ Approach: Sensory deprivation experiments, robotic fish

LL-LL+LL+

!

Visual

V+ V-



V+ school with one V- fish (red)



Pilot experiment: Manipulating 
wind speed (kind of works)



Experimental setup

(a)
Collimators

(c)

(b)

Motor & Impeller

Working 
   Area

Return Tube



3D fish-tracking system

(Section III−A)

Generative modeling Shape reconstruction

by iterated EKF (Section III−B)
Estimate cross−sectional ellipses

annealing (Section IV−B)
Reconstruct shape by simulated

by Kalman filtering (Section IV−C)

by two−stage optimization
Estimate three−dimensional midline

Smooth shape trajectories

matching (Section IV−A)
association by nearest−neighbor
Perform measurement−target data



Swarming and mating in An. gambiae

Objective: To apply tools from engineering to study 
mating behavior in the field:	


• What happens in swarms in populations of 
mosquitoes that are responsible for most of the 
human death caused by malaria? 	


• Female behavior in males swarms may not be random, 
but do they select mates?	


• Do male flight patterns and/or position in the swarm 
relates to mating success?	


Impact: Answers may influence vector control methods 
that rely on releases of sterile males



3D (mosquito) tracking system



Horizontal vs. vertical speed

black = all males red = single female



But what about the female?

black = single female blue = swarm centroid


