Anatoly B. Kolomeisky

Department of Chemistry

COUPLING OF TWO MOTOR

 PROTEINS: A NEW MOTOR CAN MOVE FASTER
Motor Proteins

Enzymes that convert the chemical energy into mechanical work
Functions: cell motility, cellular transport, cell division and growth, muscles, ...

Courtesy of Marie Curie Research Institute, Molecular Motor Group

Motor Proteins: Examples

(a)

KINESINS - linear processive motor proteins, move along microtubules, important for transport of vesicles and organelles, cell motility

Motor Proteins: Examples

M.R. Singleton, et al., Nature, 432, 187 (2004).

HELICASES - linear processive motor proteins that repair DNA breaks and defects, also important for RNA and DNA replication

Motor Proteins: Examples

F0-F1 ATP synthase -
Rotary motor proteins
Synthesizes ATP by utilizing the gradient in proton concentration, or uses ATP for proton flux

Motor Proteins: Chemistry

Motor Proteins: Properties

Non-equilibrium systems
Velocities: $0.01-100 \mu \mathrm{~m} / \mathrm{s}$ (for linear processive)
Step Sizes: 0.3-40 nm
Forces: $1-60 \mathrm{pN}$
Fuel: hydrolysis of ATP, or related compounds, or polymerization
Efficiency: 50-100\% (!!!)
Power - like jet engine
Directionality- move mainly in one direction
Diversity

Motor Proteins

Photo Conyrinht FnerheraLeonid
4 Mindais-MIT

Motor Proteins

Fundamental Problems:

1) How the chemical energy is transformed into the mechanical motion?
2) How many different mechanisms of motor proteins motion? "Physicists versus biologists"
3) Why many motor proteins are complexes of already functional subunits?
4) \ldots

RecBCD helicase

RecBCD consists of 3 subunits: RecB and RecD are active helicases; RecCconnects them
Experiments: translocation velocities at high [ATP]

b
$\stackrel{-. ~}{\square}$
c

THEORETICAL PROBLEM:

Complex motor protein particles (made of two or more active domains) can move faster than the individual motor subunits!

Our idea: interaction energy between the subunits affect the overall dynamic and biochemical properties

Our goal: to develop a quantitative model of inter-domain interaction

Theoretical Modeling of Motor Proteins Dynamics:

main approaches:

1) Thermal Ratchets
2) Multi-state Chemical Kinetic (Stochastic) Models
3) Molecular and Brownian Dynamics computer simulations

Model for Coupled Proteins:

a)

b)

c)

subunit A

4) No sequence dependence

Model:

a)

detailed balance relation:
$\mathrm{u}_{\mathrm{a}}, \mathrm{w}_{\mathrm{a}}$-rates when $\varepsilon=0$

$$
\frac{u_{a 1}}{w_{a 1}}=\frac{u_{a}}{w_{a}} \exp \left(+\frac{\varepsilon}{k_{B} T}\right)
$$

b)

detailed balance relation:

motion of domain A

$$
\frac{u_{a 2}}{w_{a 2}}=\frac{u_{a}}{w_{a}} \exp \left(-\frac{\varepsilon}{k_{B} T}\right)
$$

Model:

$l \quad P(l, m ; t)$-probability to find the molecule in the configuration with the domain A at the site m, the domain B at the site l, at time t

Dynamics is described by Master equations:

$$
\begin{aligned}
& \frac{\frac{d P(l+1, l ; t)}{d t}=u_{a 2} P(l, l ; t)+w_{b 1} P(l+1, l+1 ; t)-\left(u_{b 1}+w_{a 2}\right) P(l+1, l ; t)}{\overline{\frac{d P(l-1, l ; t)}{d t}=u_{b 2} P(l-1, l-1 ; t)+w_{a 1} P(l, l ; t)-\left(u_{a 1}+w_{b 2}\right) P(l-1, l ; t)}}
\end{aligned}
$$

Model:

Define:

Vertical

configurations
Non-vertical configurations
normalization condition

$$
P_{0}(t)+P_{1}(t)+P_{1}^{\prime}(t)=1
$$

Solutions:

Stationary-state solutions:

a)

c)

$$
P_{1}{ }^{\prime}=\frac{\alpha}{1+\alpha+\beta}
$$

$$
\text { Where: } \quad \alpha=\frac{u_{a 2}+w_{b 1}}{u_{b 1}+w_{a 2}}, \quad \beta=\frac{u_{b 2}+w_{a 1}}{u_{a 1}+w_{b 2}}
$$

Dynamic properties: velocity, dispersion

$$
V=\frac{1}{1+\alpha+\beta}\left(u_{a 2}+u_{b 2}-\alpha w_{a 2}-\beta w_{b 2}\right)
$$

Analysis. Simple Cases:

If no interaction ($\varepsilon=0$):

$$
u_{1}=u_{2}=u \quad w_{1}=w_{2}=w
$$

a)

b)

where:
$V_{0}=u-w, \quad D_{0}=\frac{u+w}{2}$
for free particles without restrictions on possible configurations

Analysis:

Asymmetric domains and $\varepsilon>0$
Recall-detailed balance relations:

$$
\begin{aligned}
& u_{j 1}=u_{j} \gamma^{1-\theta_{j 1}} \quad w_{j 1}=w_{j} \gamma^{-\theta_{j 1}} \\
& u_{j 2}=u_{j} \gamma^{-\theta_{j 2}} \quad w_{j 2}=w_{j} \gamma^{1-\theta_{j 2}}
\end{aligned}
$$

$\frac{u_{j 1}}{w_{j 1}}=\frac{u_{j}}{w_{j}} \exp \left(+\frac{\varepsilon}{k_{B} T}\right)$

b)

for $j=a, b$

a)

Analysis:

Energy distribution factors $0<\theta_{j 1}, \theta_{j 2}<1$

$$
u_{j 2}(\varepsilon)=u_{j}(0) e^{\frac{-\theta_{j 2} \varepsilon}{k_{B} T}} \quad w_{j 2}(\varepsilon)=w_{j}(0) e^{\frac{\left(1-\theta_{j 2}\right) \varepsilon}{k_{B} T}}
$$

Analysis:

Consider symmetric domains:
$\mathrm{A}=\mathrm{B}$, Assume $\theta_{j k}=\theta$

Relative velocity:

$$
r_{V}=\frac{V}{V_{0}}=\frac{2 \gamma^{1-\theta}}{2+\gamma}
$$

Velocity of free non-interacting particle
a)

b)

c)

interaction parameter

Analysis:

Relative velocity:

For $0<\theta<0.23$ there is a range of interaction energies ε when the velocity of the motor protein's complex is FASTER than the velocities of free particles!!!

Note: maximal $r_{V}=2$!

Analysis:

Effect of inter-domain interaction

Analysis:

Relative dispersion for the motor protein molecule with symmetric domains ($\mathrm{A}=\mathrm{B}$)

$$
\begin{aligned}
& r_{D}=\frac{D}{D_{0}}=\frac{2 \gamma^{1-\theta}}{2+\gamma} g(u, w ; \gamma) \\
& 0.5 \leq g(u, w ; \gamma)<1
\end{aligned}
$$

a)

b)

c)

Interaction between domains might decrease or increase fluctuations

Analysis:

Comparison of velocity and dispersion

a)

b)

c)

Interaction energy effects velocity more than dispersion
Case $r_{V}>1$ and $r_{D}<1$ - very efficient motor protein!

Application for Helicases:

From experiments:

$$
w_{j i} \approx 0
$$

RecB RecD

$$
V \approx \frac{\left(u_{a}+u_{b}\right) \gamma^{1-\theta}}{\gamma+\left(\frac{u_{a}}{u_{b}}+\frac{u_{b}}{u_{a}}\right)}
$$

$u_{a}=73 \mathrm{bp} / \mathrm{s}$ - velocity of free RecB
$u_{b}=300 \mathrm{bp} / \mathrm{s}$ - velocity of free RecD
Assume $\theta \approx 0$

$\mathrm{V}(\operatorname{RecBCD})=370 \mathrm{bp} / \mathrm{s}$ for $\varepsilon \approx 6 k_{B} T$

RecBCD
RecBCD is working at almost maximal efficiency

Explanations:

Single subunit, V_{1}

Single subunit, V_{2}

Analogy with molecular orbitals
Energy landscapes of the motor proteins are changed when they are coupled

Other Applications:

Investigation of dynamics of heterodymeric kinesins KIF3A/B W. Hancock et al., Biophys. J. 87, 1795 (2004)

KIF3A/B -wild type

KIF3A/A-chimera

KIF3B/B-chimera

Mechanism of Motility

A Symmetric hand-over-hand

It is shown experimentally that for kinesins and myosins -hand-over-hand mechanism

Other Applications:

Velocities of wild-type

 KIF3A/B and chimeric KIF3 motor proteins

Models:

Coordination= interaction?

3: Coordinated Head Model

$$
\varliminf_{\mathrm{k}_{A}\left(\mathrm{x}_{B}\right)}^{\mathrm{k}_{\mathrm{B}}} \xrightarrow{\mathrm{k}_{A}\left(\mathrm{x}_{\mathrm{B}}\right)} \xrightarrow{\mathrm{k}_{B}} \ldots \quad k_{A B}=\frac{2 \times\left(2.9 k_{A}\right) \times k_{B}}{2.9 k_{A}+k_{B}}
$$

Hypothesis:

Other Applications:

Properties of homodimeric and heterodimeric kinesins

Proc. Natl. Acad. Sci. USA, 99, 16058-16063 (2002)

Table 1. Summary of ATPase measurement, MT-gliding assays, and single-molecule experiments of the homodimeric and heterodimeric kinesin constructs

	Construct	ATPase assay		Gliding assay	Beads assay
		$k_{\text {cat }}\left(\mathrm{s}^{-1} \cdot\right.$ head $\left.^{-1}\right)$	$K_{\mathrm{m}}(\mathrm{MT}), \mu \mathrm{M}$	Velocity, nm / s	Stall force, pN
Homodimer	WT*	28.3 ± 2.5	0.4 ± 0.2	679 ± 59	6.3 ± 0.9
	WT ${ }^{+}$	27.8 ± 1.7	0.5 ± 0.2	683 ± 42	6.0 ± 0.3
	L11/L11	11.1 ± 1.2	1.1 ± 0.3	179 ± 23	1.0 ± 0.2
	L12/L12	$0.8{ }^{\ddagger}$	ND ${ }^{\ddagger}$	0^{5}	0^{5}
	L8/L8	20.8 ± 3.1	1.2 ± 0.6	514 ± 31	4.0 ± 0.5
	L13/L13	19.8 ± 2.0	0.3 ± 0.2	5 ± 1	$0{ }^{10}$
Heterodimer	WT/L11	20.2 ± 1.7	1.0 ± 0.3	202 ± 29	1.8 ± 0.3
	WT/L12	16.6 ± 2.2	2.0 ± 0.4	101 ± 25	0.8 ± 0.2
	WT/L8	22.7 ± 1.4	0.5 ± 0.2	554 ± 29	6.0 ± 0.7
	WT/L13	24.1 ± 0.7	0.2 ± 0.1	8 ± 1	$0{ }^{\circ \prime}$

It cannot be explained by independent hand-over-hand model!
Coupling is important!

Other Applications:

Can be described by a 2-state model with different interactions between different domains

KIF3A/B -wild type $\varepsilon(\mathrm{A}-\mathrm{B})$

KIF3A/A-chimera $\varepsilon(\mathrm{A}-\mathrm{A})$

KIF3B/B-chimera $\varepsilon(\mathrm{B}-\mathrm{B})$

Experiments:

In vivo transport of organelles by dyneins and kinesins

Fluorescence Imaging investigation

C. Kural et al., Science, 308, 1469-1472 (2005)

Observation of multiple peaks in velocities of organelles - multiple kinesins or dyneins work together!

In vivo speed of 1 kinesin $-1.5 \mu \mathrm{~m} / \mathrm{s}$
In vivo speed of 1 dynein $-1.7 \mu \mathrm{~m} / \mathrm{s}$

Future Directions and Improvements:

1) Include sequence dependence
2) More realistic potentials (spring, etc.) of interactions
3) Intermediate conformations and states
4) DNA elasticity and interdomain protein flexibility
5) Interactions and dynamics of N motor proteins

CONCLUSIONS

- A possible quantitative mechanism of inter-domain interaction and cooperation in motor proteins is proposed
- Main idea- coupling between motor subunits changes the energy landscapes
- Predictions: proteins made of several functional subunits might move faster and fluctuate less than free particles
- The mechanism is successfully applied for helicases
- 2 dynamic regimes for different couplings

Acknowledgements

- Financial Support:

NSF, Sloan Foundation, Dreyfus Foundation, Welch Foundation
Thanks: Prof. M.E. Fisher and E. Stukalin
Publications: Phys. Rev. Lett. 94, 238101 (2005), and
Phys. Rev. E 73, 031922 (2006)

