

Anatoly B. Kolomeisky

Department of Chemistry

<u>COUPLING OF TWO MOTOR</u> PROTEINS: A NEW MOTOR CAN <u>MOVE FASTER</u>

Motor Proteins

Enzymes that convert the chemical energy into mechanical work

Functions: cell motility, cellular transport, cell division and growth, muscles, ...

Courtesy of Marie Curie Research Institute, Molecular Motor Group

Motor Proteins: Examples

KINESINS – linear processive motor proteins, move along microtubules, important for transport of vesicles and organelles, cell motility

Motor Proteins: Examples

M.R. Singleton, et al., *Nature*, **432**, 187 (2004).

HELICASES – linear processive motor proteins that repair DNA breaks and defects, also important for RNA and DNA replication

Motor Proteins: Examples

F0-F1 ATP synthase –

Rotary motor proteins

Synthesizes ATP by utilizing the gradient in proton concentration, or uses ATP for proton flux

Motor Proteins: Properties

- Non-equilibrium systems
- Velocities: $0.01-100 \mu m/s$ (for linear processive)
- Step Sizes: 0.3-40 nm
- Forces: 1-60 pN
- Fuel: hydrolysis of ATP, or related compounds, or polymerization
- Efficiency: 50-100% (!!!)
- Power like jet engine
- Directionality- move mainly in one direction
- Diversity

Motor Proteins

Motor Proteins

Fundamental Problems:

- 1) How the chemical energy is transformed into the mechanical motion?
- 2) How many different mechanisms of motor proteins motion? "Physicists *versus* biologists"
- 3) <u>Why many motor proteins are complexes of</u> <u>already functional subunits?</u>
- 4) ...

RecBCD helicase

RecBCD consists of 3 subunits: RecB and RecD are active helicases; RecCconnects them **Experiments: translocation** velocities at high [ATP] V(RecB)=73 bp/sV(RecD)=300 bp/sV(RecBCD)=370 bp/s !!!

Counter-intuitive!

THEORETICAL PROBLEM:

Complex motor protein particles (made of two or more active domains) can move <u>faster</u> than the individual motor subunits!

Our idea: interaction energy between the subunits affect the overall dynamic and biochemical properties

Our goal: to develop a <u>quantitative</u> model of inter-domain interaction

Theoretical Modeling of Motor Proteins Dynamics:

- main approaches:
- 1) Thermal Ratchets
- 2) Multi-state Chemical Kinetic (Stochastic) Models
- 3) Molecular and Brownian Dynamics computer simulations

Model for Coupled Proteins:

 Motor protein: consists of two subunits moving along different molecular tracks (double- or single-stranded DNA)

- 2) 3 possible configurations: vertical configuration has ε=0, other configurations ε>0
- 3) u,w transition rates; ε -energy of interaction, $\varepsilon > 2 k_B T$ – energy to break the bond between nucleotides

4) No sequence dependence

Model:

Model:

P(l,m;t)-probability to find the molecule in the configuration with the domain A at the site *m*, the domain B at the site *l*, at time *t*

Dynamics is described by Master equations:

m

$$\frac{dP(l+1,l;t)}{dt} = u_{a2}P(l,l;t) + w_{b1}P(l+1,l+1;t) - (u_{b1} + w_{a2})P(l+1,l;t)$$
$$\frac{dP(l-1,l;t)}{dt} = u_{b2}P(l-1,l-1;t) + w_{a1}P(l,l;t) - (u_{a1} + w_{b2})P(l-1,l;t)$$

Model:

Define:

Vertical configurations

Non-vertical configurations

normalization condition

$$P_0(t) + P_1(t) + P_1'(t) = 1$$

Solutions:

Stationary-state solutions:

Dynamic properties: velocity, dispersion

$$V = \frac{1}{1 + \alpha + \beta} (u_{a2} + u_{b2} - \alpha w_{a2} - \beta w_{b2})$$

Analysis. Simple Cases:

$$V_0 = u - w$$
, $D_0 = \frac{u + w}{2}$

for free particles – without restrictions on possible configurations

 $\gamma = \exp(\frac{\varepsilon}{k_B T})$

 $0 < \theta_{j1}, \theta_{j2} < 1$ - energy distribution factors

Energy distribution factors $0 < \theta_{j1}, \theta_{j2} < 1$

Consider symmetric domains: A=B, Assume $\theta_{ik} = \theta$

Relative velocity:

$$r_V = \frac{V}{V_0} = \frac{2 \gamma^{1-\theta}}{2 + \gamma}$$

Velocity of free non-interacting particle

interaction parameter

For $0 < \theta < 0.23$ there is a range of interaction energies ε when the velocity of the motor protein's complex is **FASTER** than the velocities of free particles!!!

Note: maximal $r_V = 2!$

increases with ε

Relative dispersion for the motor protein molecule with symmetric domains (A=B)

$$r_{D} = \frac{D}{D_{0}} = \frac{2\gamma^{1-\theta}}{2+\gamma}g(u, w; \gamma)$$
$$0.5 \le g(u, w; \gamma) < 1$$

Interaction between domains might decrease or increase fluctuations

Interaction energy effects velocity more than dispersion Case $r_V > 1$ and $r_D < 1$ – very efficient motor protein!

Application for Helicases:

 $u_a = 73 \text{ bp/s}$ - velocity of free RecB

 $u_b=300$ bp/s- velocity of free RecD

Assume $\theta \approx 0$

V(RecBCD)=370 bp/s for $\varepsilon \approx 6 k_B T$

RecBCD

RecBCD is working at almost maximal efficiency

Explanations:

Analogy with molecular orbitals

Energy landscapes of the motor proteins are changed when they are coupled

Investigation of dynamics of heterodymeric kinesins KIF3A/B

W. Hancock et al., Biophys. J. 87, 1795 (2004)

Mechanism of Motility

A Symmetric hand-over-hand

It is shown experimentally that for kinesins and myosins – hand-over-hand mechanism

Properties of homodimeric and heterodimeric kinesins

Proc. Natl. Acad. Sci. USA, 99, 16058-16063 (2002)

	Construct	ATPase assay		Gliding assay	Beads assay
		k_{cat} (s ⁻¹ ·head ⁻¹)	<i>K</i> _m (MT), μM	Velocity, nm/s	Stall force, pN
Homodimer	WT*	28.3 ± 2.5	0.4 ± 0.2	679 ± 59	6.3 ± 0.9
	WT ⁺	27.8 ± 1.7	0.5 ± 0.2	683 ± 42	6.0 ± 0.3
	L11/L11	11.1 ± 1.2	1.1 ± 0.3	179 ± 23	1.0 ± 0.2
	L12/L12	0.8 [‡]	ND [‡]	05	O§
	L8/L8	20.8 ± 3.1	1.2 ± 0.6	514 ± 31	4.0 ± 0.5
	L13/L13	19.8 ± 2.0	0.3 ± 0.2	5 ± 1	O¶
Heterodimer	WT/L11	20.2 ± 1.7	1.0 ± 0.3	202 ± 29	1.8 ± 0.3
	WT/L12	16.6 ± 2.2	2.0 ± 0.4	101 ± 25	0.8 ± 0.2
	WT/L8	22.7 ± 1.4	0.5 ± 0.2	554 ± 29	6.0 ± 0.7
	WT/L13	24.1 ± 0.7	0.2 ± 0.1	8 ± 1	01

Table 1. Summary of ATPase measurement, MT-gliding assays, and single-molecule experiments of the homodimeric and heterodimeric kinesin constructs

It cannot be explained by independent hand-over-hand model!

Coupling is important!

Can be described by a 2-state model with different interactions between different domains

Experiments:

In vivo transport of organelles by dyneins and kinesins

Fluorescence Imaging investigation

C. Kural et al., *Science*, **308**, 1469-1472 (2005)

Observation of multiple peaks in velocities of organelles – multiple kinesins or dyneins work together!

In vivo speed of 1 kinesin – 1.5 μ m/s

In vivo speed of 1 dynein – 1.7 μ m/s

Future Directions and Improvements:

- 1) Include sequence dependence
- 2) More realistic potentials (spring, etc.) of interactions
- 3) Intermediate conformations and states
- 4) DNA elasticity and interdomain protein flexibility
- 5) Interactions and dynamics of *N* motor proteins

CONCLUSIONS

- A possible <u>quantitative</u> mechanism of inter-domain interaction and cooperation in motor proteins is proposed
- Main idea– coupling between motor subunits changes the energy landscapes
- Predictions: proteins made of several functional subunits might move faster and fluctuate less than free particles
- The mechanism is successfully applied for helicases
- 2 dynamic regimes for different couplings

Acknowledgements

- Financial Support:
- NSF, Sloan Foundation, Dreyfus Foundation, Welch Foundation
- Thanks: Prof. M.E. Fisher and E. Stukalin
- Publications: *Phys. Rev. Lett.* **94**, 238101 (2005), and *Phys. Rev. E* **73**, 031922 (2006)