# Computing by biology

- Survival of cells requires constant monitoring and processing of environmental and cellular information
  - availability of resources: sugars, amino acids, minerals, ...
  - external state: temperature, pH, osmotic presure, ...
  - internal state: mitosis, myosis, development, ...
  - inter-cellular signals: phemerones, hormones, ...
- Limited number of cellular components (genes/proteins) requires combinatorial strategies for decision making
  - protein networks: proteins phorphorylating each other
  - gene networks: genes turning each other on/off
- Changing habitats: hard-wired computational processes need to be readily evolvable
  - (e.g., programmable rather than dedicated computer)
- → Discuss in the context of gene regulation

## Transcription regulation in bacteria



Coupling to environment: TF-DNA binding modulated by inducers or phosphorylation

e.g., regulation of the *lac*-operon













### Molecular basis of complex transcription control

- complex protein-protein interactions (combinatorial control ???)
- alternative: **regulated recruitment** [Ptashne & Gann '97]
  - glue-like interaction between TFs/RNAP
  - arrange DNA binding sites/strengths to accomplish desired control functions
    (what are possible? how?)

#### This study:

- take regulated recruitment as starting point
- include thermodynamics of TF/DNA/RNAP interaction
- implement control functions of increasing complexity

#### **Results:**

- → a wide class of complex control functions implementable
- → recipe for selecting the strengths and positions of regulatory seq's
- → transcription control system = programmable molecular computer









## More complex control functions, e.g., **XOR** ?

| A/B   | XOR | OR  | NAND |
|-------|-----|-----|------|
| lo/lo | OFF | OFF | ON   |
| lo/hi | ON  | ON  | ON   |
| hi/lo | ON  | ON  | ON   |
| hi/hi | OFF | ON  | OFF  |

cannot be implemented by overlapping A and B sites



[cf: linear perceptron (Minsky '69)]

XOR(A,B) = (A OR B) AND (A AND B)

Allosteric or cofactor-mediated:



#### problem:

 lose combinatorial control e.g., can't implement AND elsewhere

## More complex control functions, e.g., **XOR** ?

|  | A/B   | XOR | OR  | NAND |
|--|-------|-----|-----|------|
|  | lo/lo | OFF | OFF | ON   |
|  | lo/hi | ON  | ON  | ON   |
|  | hi/lo | ON  | ON  | ON   |
|  | hi/hi | OFF | ON  | OFF  |

cannot be implemented by overlapping A and B sites



[cf: linear perceptron (Minsky '69)]

XOR(A,B) = (A OR B) AND (A AND B)

Regulated recruitment:



- integrates **OR** and **NAND** into a single regulatory region
- modular and evolvable
- but requires fine balance between activating/repressive effects
  - → need quantitative characterization

### Quantitative modeling:

• specific protein-DNA binding:



### Quantitative modeling:

# programmable

• specific protein-DNA binding:

molecular interaction



binding probability:  $p = \frac{n}{n + \hat{n}}$ 

*n*: TF conc. [1~1,000/cell]  $\tilde{n}$ : half-max binding conc.

can be tuned [1~10,000/cell]

• protein-protein interaction: tunable via site placements quantify by coop. factor  $\omega$ 

no interaction  $\omega = 1$ 

repulsive  $\omega = 0$ 

cooperative  $\omega = 20$ 



[longer-ranged for coop. TF-RNAP interaction]

















## Specific vs. generic interaction

- so far, only discussed integration of signals carried by two TF's (A & B)
  - combinatorial integration from choice and placement of DNA binding sites
- same constructs can be used to control genes with different pairs of TF's (e.g., A & C, B & C) if similar TF-TF interaction exist
  - generic interaction → combinatorial control
- full power of combinatorial integration/control may not be necessary
- → expect unnecessary interaction to decay away
- → remaining interaction strengthened if needed ("specific")







## Ingredients for complex transcription control

- programmable protein-DNA interaction
- weak, glue-like interaction between nearby proteins
- long-distance activation/repression
- → already possible w/ bacteria transcription apparatus [experimental effort to synthesize logic gates]
- → but only simple controls found/characterized (so far) not needed? or other limitations?
  - -- Promiscuity of glue-like interaction? Okay for weak interaction
  - -- Inter-genic cross talk? Big problem for bacteria necessary evil due to long-distance interaction
- → complex transcription control in bacteria only possible for isolated genes (separated far apart or on plasmids)

### Ingredients for complex transcription control

- programmable protein-DNA interaction
- weak, glue-like interaction between nearby proteins
- long-distance activation/repression

Eukaryotes: (merely) a superior implementation platform

- insulating elements: crucial for eliminating cross talk
- generic cooperative interaction mediated by **nucleosomes** [Polach & Widom, '96]
- → physical attraction not necessary
- **short-range quenching** [M. Levine]
- distal repression via recruitment of chromatin modification agents
- physical sequestation, indep recruitment, ...









vacuum tube

pentium chip

Different implementation of the same principle!

### Summary and Outlook:

- genetic computing: broad but shallow
- cis-regulatory system: programmable molecular network (molecular Boltzmann machine!)
  - modular organization (CNF or DNF)
  - recipe for coding cis-regulatory logics
  - → evolution of complex control functions
- incorporate feedback
  - $\rightarrow$  simple constructs of memory, counter, differentiator, ...
- ingredients for complex transcription control:
  - specific protein-DNA interaction
  - weak, glue-like protein-protein interaction
  - long distance activation/repression
  - insulation of inter-genic, inter-module cross talk
- phenomenological model of combinatorial gene regulation
  - → relate binding site information to gene expression patterns

#### Collaborators:

- -- Nicolas Buchler (UCSD)
- -- Ulrich Gerland (UCSD)

#### Thanks to:

Antoine Danchin (Pasteur)

Eric Davidson (Caltech)

Bill Loomis (UCSD)

Andrew Murray (Harvard)

Mark Ptashne (Sloan-Kettering)

John Reinitz (Stony Brook) Jon Widom (Northwestern)

• • •

**ITP** 

Support: NSF, Burroughs-Wellcome, DAAD