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Sliding friction between biopolymers

In Vitro cytoplasmic StreamingFlagellar beating in vivo and in vitro



liquid crystal isotropic nematic

Entropy and chirality!

Colloidal spheres/rods  colloidal crystals, liquid crystals …

Amphiphilic self-assembly  self-limited structures, i.e. 2D membranes, 1D 

wormlike micelles, spherical micelles … 

Assembly of 3D structures ! 

Assembly of  self-limited structures from homogenous particles?
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Part I:   Entropy drive self-assembly of 2D non-amphiphilic   

membranes

Part II:  Structure and energetics of an exposed edge -> chiral 

control of line tension 

Part III: Structure and interactions of p-wall defect in 2D 

membranes

Outline 



Part I:

Entropic self-assembly of 2D membranes
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Schilling and Frenkel, Phys. Rev E 2003



Colloidal Membranes



Colloidal Membranes

2µm

Protrusion Fluctuations suppressed in a stack

Molecular Protrusions

z

high polymer 
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smooth surface

attractive 

interactions

 low polymer 
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rough surface

repulsive 

interactions 



 continuum properties analogous to lipid bilayers

Conclusions 

Part I:

Assembly of  colloidal membranes

 self-assembly of 2D surface from homogeneous molecules

 entropy driven phenomena



Part II:

edge of colloidal membranes



Structure of the membrane’s edge (achiral rods)

Edge 

configuration 1

Edge 

configuration 2

 large interfacial area

 no elastic distortion

 small interfacial area

 large elastic distortion



fluorescence microscopy

molecular lengthscale

Quantitative PolScope

director field 

LC-PolScope – pixel 

brightness corresponds 

to 2D projection of the

local birefringence 

Birefringence map of colloidal membranes
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2. Theory & Experiment

• twist penetration length 0.48 mm
• x is analogous to London penetration 

depth in superconductors  (deGennes) 
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1. Theoretical analysis – half plane 
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(x) – local tilt of the molecules
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Twist penetration length in 2D membranes



Electron microscopy of membrane’s edge
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Fluctuations of the edge  line tension
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Line 

tension 

1D nematic

elastic  

energy

Fluctuation spectrum yields line tension and the Frank elastic constant
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line tension
frank elastic

constant

noise

Fluctuations spectrum of membrane’s edge 

Small  q limit

Fluctuations dominated by 

surface tensions

large q limit

fluctuations dominated by 

bending elasticity



Grason and Bruinsma PRL, 2007

Selinger, Spector and Schnur, J. Chem Phys B 2001

Formation of a monolayer is incompatible with chirality

achiral monolayers

indefinete growth

Monolayers with chiral rods 

frustration 



Filamentous viruses can be chiral

5µm

50µm

Cholesteric Phase

6.6nm

Virus



Chirality is temperature dependent
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Can efff be zero?    

Chirality controls line tension !





Self-assembly and 

growth of ribbons

1. Metastable

self-limited disks

2. Coalescence of 

disks into 

ribbons 

3. Growth of long ribbons



Phase diagram:

2D disks vs. 1D twisted 

ribbons
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DIC image

PolScope image

director field is inhomogeneous 
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Pitch and width of 

twisted ribbons
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Part III:

defects in colloidal membranes



Disk coalescence is chirality dependent
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core of the p wall is 1D nematic

DIC microscopy

2D PolScope

Defects in chiral membranes: p twist walls

3D PolScopefluorescence



DIC microscopy

LC PolScope
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Defects in chiral membranes: p twist walls



Line tension of p walls





Creating p-walls with laser tweezers
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DNA major coat protein

Monodisperse

filamentous

viruses

Electron microscopy

Flexibility, aspect ratio, chirality …

10 mm 2.5 mm

Mesoscopic self-

assembled disks

Attractive interactions

Twissted 

ribbons

Hierarchical self-assembly of filamentous viruses



Assembly of ring polymers

Condensation of twisted ribbons into torroids



Double Twisted Helices

5µm
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