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The cytoskeleton
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Microtubules are directional:
(-) ends originate from the centrosome (MTOC)



Motor proteins

plus end minus end

light chains Bt )
0 nm

kinesin dynsin

e Kinesin moves toward (+) end, Dynein toward (-) end.
e Low processivity, ~1 s in bound state (step time ~6ms).
e Velocity ~1um/s.









Questions:

e What is the purpose of the finite motor processivity?

e What is the effect of local disorder of the
microtubule network on the active transport in the
cell?



In vitro experiment: 3-D with orientational order




In vitro study

wil1ld_g04_30fpz

mutzid_god_30fhs

e Fluorescently labeled ssDNA-protein complex
including a nuclear localization signal (NLS)
peptide.

e Particle tracking assays using a camera &
designated software.

H. Salman, A. Abu-Arish, S. Oliel, A.
Loyter, J. Klafter, R. Granek, and

M. Elbaum,

Biophys. J. (2005)



Results

e pl —labeled complex without NLS
e an — labeled complex with NLS

e an+Noc — labeled complex with
NLS without microtubules
(destroyed by Nocodazole)
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Random velocity model in 1+1 dimensions
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Random velocity model in 1+1 dimensions

Exact result, Super-diffusion:

G. Zumofen, J. Klafter, A. Blumen, PRA (1990)

y2 (t) — t3/ 2 S. Redner, PRE (1997)
J.-P. Bouchaud, A. Georges, P. Le Doussal, J. Physique
(1987)
Scaling argument:

7) _ 2,2 _ +1/2 The probability of return to the
<y (t)> ~ Po’x(t)v t” where P, (t)~t origin in 1-D

Simulation results:

e Balanced tracks (% up=% down) — fits the theory of ZKB.

e diffusion with drift — a crossover from short-time super-diffusion
<y2 (t)> ~t¥>  to long-time diffusion <y2(t)> -t |

explained by a scaling argument



RVM - Unbalanced diffusion

MSD <(AX)2>1/2 —2\/pq-4t/z,

Drift (x)=(p— Q)TL

PN G R T
erine. <x> (p—q) /TTO

When 6>>1 - RVM, when 6<<1 — Diffusion

For p=0.51 & ¢=0.49: 6=1 at t=2500
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2-D network model
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More accurate self-consistent calculation:

<p2>:<xz>+<y2>: 91/3 e g2l | s
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2-D network model

Self-consistent theory:

) =l) e

Simulation resulits:

e Balanced network — fits theory

eUnbalanced network, long times:
unbalanced direction —» RVM with drift <x> =(p —qg)vt

perpendicular direction — Long-time diffusion

)



Slope=1.25 (4/3)

f."yz".w ~ {
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Processivity dependence

Slope=1.33
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3-D network model
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Scaling argument:

<x2(t)> ~ P, (VL] where

1 1
Py o (1) = Py (1)P, (1) » ——x ———— |RUTLIEEE TR R SR
| | ' <y2(t)> <22(t)> origin in the y-z plane

By symmetry

2
<r (1) > all¥ Diffusion-like, but active (non-thermal)

More accurate self-consistent calculation:

where is the mesh size
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In vitro experiment: 3-D with orientational order




In vitro study
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e Fluorescently labeled ssDNA-protein complex
including a nuclear localization signal (NLS)
peptide.

e Particle tracking assays using a camera &
designated software.

H. Salman, A. Abu-Arish, S. Oliel, A.
Loyter, J. Klafter, R. Granek, and

M. Elbaum,

Biophys. J. (2005)



Results

e pl —labeled complex without NLS
e an — labeled complex with NLS

e an+Noc — labeled complex with
NLS without microtubules
(destroyed by Nocodazole)
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Scaling argument:

<x2(t)> ~ P, (VL] where

1 1
Po,yz (t) = Po,y (t) Po,z (t) ~ f X \/— Th_e _prpbarl'ality of :'eturn to the
<y (t)> Dt origin in the y-z plane

y2
,0 (t) sl Diffusion-like, but active (non-thermal)

More accurate self-consistent calculation:

is the mesh size
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3-D animal cell model
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Simulations of “First Exit”’ problem:

o Kinesin mediated transport:

(i) Probability to arrive from the nucleus to
the membrane until time t.

(ii) Probability to arrive from the nucleus to
a localized target in the cell (e.g., ribosome)
until time t.

e Dynein mediated transport: Probability to arrive
from the membrane to the nucleus until time t.



Kinesin mediated transport: From nucleus to membrane
Many cells averaging
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Dynein mediated transport: From membrane to nucleus
Many cells averaging
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Kinesin mediated transport:

From nucleus to a localized target (e.g. ribosome)
Radiative boundary conditions at the membrane
Many cells averaging
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Kinesin mediated transport:

From nucleus to a localized target (e.g. ribosome)
Reflective boundary conditions at the membrane
Many cells averaging

—e— Diffusion
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Short times
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What else?

Unusual Response to Force (?)
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I.e. stall forceis



Alonq the force:

(x)=pft
(o 7)1

linear response

for t<<t

for t<<t

t<<t*

t>>t*




Conclusions:

*Increase of polarity (velocity) field and Euclidean dimensions
leads to a decrease of the anomalous diffusion exponent.

In 3-D disordered networks active transport may appear
diffusive-like (with minor logarithmic factors hinting to its
origin) consistent with experiments.

* The finite, intermediate, processivity of the microtubule
associated motor proteins appears “optimize” the efficiency of
fransport between the different network tasks: transport from
nucleus to the membrane and vice-versa, and between
localized cell compartments.

 The local disorder of the microtubule network in the cell also
appears to enhance the efficiency of transport between
different locations.



Thank you
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Slope=1.333




