

Active Transport in Microtubules Networks

Rony Granek Biotechnology Engineering, BGU

Coworkers: Aviv Kahana, Gilad Kenan, Mario Feingold BGU Michael Elbaum WIS

An idealized animal cell

The cytoskeleton

http://img.sparknotes.com/figures/D/d479f5da672c08a54f986ae699069d7a/cytoskeleton.gif

http://campus.queens.edu/faculty/jannr/cells/cell/pics/cytoskeleton.jpg%20

Microtubules are directional: (-) ends originate from the centrosome (MTOC)

Motor proteins

- Kinesin moves toward (+) end, Dynein toward (-) end.
- Low processivity, ~1 s in bound state (step time ~6ms).
- Velocity ~1µm/s.

Microtubules

Global order vs. local disorder

Questions:

- What is the purpose of the finite motor processivity?
- What is the effect of local disorder of the microtubule network on the active transport in the cell?

In vitro experiment: 3-D with orientational order

In vitro study

- Fluorescently labeled ssDNA-protein complex including a nuclear localization signal (NLS) peptide. Motor protein assisted transport.
- Particle tracking assays using a camera & designated software.

H. Salman, A. Abu-Arish, S. Oliel, A. Loyter, J. Klafter, R. Granek, and M. Elbaum, Biophys. J. (2005)

Results

pl – labeled complex without NLS
an – labeled complex with NLS
an+Noc – labeled complex with NLS without microtubules (destroyed by Nocodazole)

Question:

Why does the active transport appear as simple diffusion?

Aviv Kahana,^{1,2} Gilad Kenan,¹ Mario Feingold,² Michael Elbaum,³ and Rony Granek^{1,4,*}

PHYSICAL REVIEW E 78, 051912 (2008)

Random velocity model in 1+1 dimensions

Random velocity model in 1+1 dimensions

Exact result, Super-diffusion:

$$\left\langle y^{2}(t)\right\rangle \sim t^{3/2}$$

Scaling argument:

G. Zumofen, J. Klafter, A. Blumen, PRA (1990) S. Redner, PRE (1997) J.-P. Bouchaud, A. Georges, P. Le Doussal, J. Physique (1987)

$$\left\langle y^{2}(t) \right\rangle \approx P_{0,x}(t) v^{2} t^{2}$$
 where $P_{0,x}(t) \sim t^{-1/2}$ The probability of return to the origin in 1-D

Simulation results:

• Balanced tracks (% up=% down) – fits the theory of ZKB.

diffusion with drift – a crossover from short-time super-diffusion

 $\left\langle y^{2}(t) \right\rangle \sim t^{3/2}$ to long-time diffusion $\left\langle y^{2}(t) \right\rangle \sim t$

explained by a scaling argument

RVM – Unbalanced diffusion

MSD
$$\langle (\Delta x)^2 \rangle^{1/2} = 2\sqrt{pq} \cdot \sqrt{t/\tau_0}$$

Drift $\langle x \rangle = (p-q) \frac{t}{\tau_0}$
fine: $\delta \equiv \frac{\langle (\Delta x)^2 \rangle^{1/2}}{\langle x \rangle} = \frac{2\sqrt{pq}}{(p-q)} \frac{1}{\sqrt{t/\tau_0}}$

def

When $\delta >>1 \rightarrow RVM$, when $\delta <<1 \rightarrow Diffusion$

For $p=0.51 \& q=0.49: \delta=1$ at t=2500

2-D network model

Scaling argument:

$$\left\langle x^{2}(t)\right\rangle \approx P_{0,y}(t) v^{2} t^{2}$$

where

 $P_{0,y}(t) \approx \frac{1}{\sqrt{\langle y^2(t) \rangle}}$

The probablity of return to the origin along the y axis, assuming Gaussian PDF

By symmetry

 $\langle x^{2}(t) \rangle = \langle y^{2}(t) \rangle = \frac{\langle \rho^{2}(t) \rangle}{2}$

More accurate self-consistent calculation:

$$\begin{split} &\frac{d^2}{dt^2}\langle y^2(t)\rangle=2v^2P_{o,x}(t)\\ &\frac{d^2}{dt^2}\langle x^2(t)\rangle=2v^2P_{o,y}(t) \end{split}$$

From symmetry $\langle x^2 \rangle = \langle y^2 \rangle$

$$\frac{d^2}{dt^2} \langle x^2(t) \rangle = 2v^2 P_{o,x}(t)$$

Assuming Gaussian PDFs

$$\left\langle \rho^{2} \right\rangle = \left\langle x^{2} \right\rangle + \left\langle y^{2} \right\rangle = \left(\frac{9^{2/3}}{\pi^{1/3}} v^{4/3} \xi^{2/3} \right) t^{4/3}$$

PDF along x-axis at time $t = 10^5 \tau_v$

2-D network model

Self-consistent theory:

$$\left\langle x^{2}\right\rangle = \left\langle y^{2}\right\rangle \sim t^{4/3}$$

Simulation results:

• Balanced network – fits theory

•Unbalanced network, long times: unbalanced direction \rightarrow RVM with drift $\langle \chi$

$$\langle x \rangle = (p-q)vt$$

perpendicular direction \rightarrow Long-time diffusion

$$\left\langle y^{2}\right\rangle \sim t$$

(b)

Processivity dependence

3-D network model

Scaling argument:

$$\left\langle x^{2}(t)\right\rangle pprox P_{0,yz}(t) v^{2}t^{2}$$

where

$$P_{0,yz}(t) = P_{0,y}(t)P_{0,z}(t) \approx \frac{1}{\sqrt{\langle y^2(t) \rangle}} \times \frac{1}{\sqrt{\langle z^2(t) \rangle}}$$

The probablity of return to the origin in the y-z plane

By symmetry

$$\left\langle x^{2}(t)\right\rangle = \left\langle y^{2}(t)\right\rangle = \left\langle z^{2}(t)\right\rangle = \frac{\left\langle r^{2}(t)\right\rangle}{3}$$

Diffusion-like, but active (non-thermal)

More accurate self-consistent calculation:

$$\left\langle \overrightarrow{r^{2}}(t) \right\rangle \approx A \xi v t \left[\ln \left(\frac{t}{\tau_{v}} \right) \right]^{1/2}$$
 where $\left[\tau_{v} = \frac{\xi}{v} \right]$, is the mesh size

A
$$\cong$$
 2.4

In vitro experiment: 3-D with orientational order

In vitro study

- Fluorescently labeled ssDNA-protein complex including a nuclear localization signal (NLS) peptide. Motor protein assisted transport.
- Particle tracking assays using a camera & designated software.

H. Salman, A. Abu-Arish, S. Oliel, A. Loyter, J. Klafter, R. Granek, and M. Elbaum, Biophys. J. (2005)

Results

pl – labeled complex without NLS
an – labeled complex with NLS
an+Noc – labeled complex with NLS without microtubules (destroyed by Nocodazole)

Question:

Why does the active transport appear as simple diffusion?

Scaling argument:

$$\left\langle x^{2}(t) \right\rangle \approx P_{0,yz}(t) v^{2}t^{2} \qquad \text{where}$$

$$P_{0,yz}(t) = P_{0,y}(t)P_{0,z}(t) \approx \frac{1}{\sqrt{\left\langle y^{2}(t) \right\rangle}} \times \frac{1}{\sqrt{Dt}} \qquad \text{The probablity of return to the origin in the y-z plane}$$

$$\text{By symmetry} \quad P_{0,yz}(t) = P_{0,xz}(t) \qquad \text{and} \qquad \left\langle x^{2}(t) \right\rangle = \left\langle y^{2}(t) \right\rangle = \frac{\left\langle \rho^{2}(t) \right\rangle}{2}$$

$$\Rightarrow \qquad \left\langle \rho^{2}(t) \right\rangle \sim t \qquad \text{Diffusion-like, but active (non-thermal)}$$

More accurate self-consistent calculation:

$$\left\langle \rho^{2}(t) \right\rangle \approx A \frac{\left(\xi v\right)^{4/3}}{D^{1/3}} t \left[\ln \left(\frac{t}{\tau_{v}}\right) \right]^{2/3}$$
 where $\tau_{v} = \frac{\xi}{v}$

$$A\cong 1.2$$

1

3-D animal cell model

Simulations of "First Exit" problem:

• Kinesin mediated transport:

(i) Probability to arrive from the nucleus to the membrane until time t.

(ii) Probability to arrive from the nucleus to a localized target in the cell (e.g., ribosome) until time t.

• Dynein mediated transport: Probability to arrive from the membrane to the nucleus until time t.

Kinesin mediated transport: From nucleus to membrane Many cells averaging

Dynein mediated transport: From membrane to nucleus Many cells averaging

p _{exit}

Kinesin mediated transport:

From nucleus to a localized target (e.g. ribosome) Radiative boundary conditions at the membrane Many cells averaging

Kinesin mediated transport:

From nucleus to a localized target (e.g. ribosome) Reflective boundary conditions at the membrane Many cells averaging

Short times

What else?

Unusual Response to Force (?)

Assumption –

Linear-like response of a single motor walking on a single MT:

or

$$v = v_0 \pm \mu f$$

i.e. stall force is

ty

Along the force:

$$\langle x \rangle = \mu f t$$
 linear response

 $t^{*} = \frac{v_{0}^{2}\xi}{\mu^{3}f^{3}}$

$$\left\langle \left(x - \left\langle x \right\rangle\right)^2 \right\rangle \sim \begin{cases} t^{4/3} & \text{for} \quad t \ll t^* \\ t^{3/2} & \text{for} \quad t \ll t^* \end{cases}$$

Perpendicular to the force:

$$\left\langle y^{2} \right\rangle \sim \begin{cases} t^{4/3} & \text{for} \quad t \ll t^{*} \\ t & \text{for} \quad t \gg t^{*} \end{cases}$$

Conclusions:

 Increase of polarity (velocity) field and Euclidean dimensions leads to a decrease of the anomalous diffusion exponent.

•In 3-D disordered networks active transport may appear diffusive-like (with minor logarithmic factors hinting to its origin) consistent with experiments.

• The finite, intermediate, processivity of the microtubule associated motor proteins appears "optimize" the efficiency of transport between the different network tasks: transport from nucleus to the membrane and *vice-versa*, and between localized cell compartments.

• The local disorder of the microtubule network in the cell also appears to enhance the efficiency of transport between different locations.

