Chiral self-organization of the bacterial cell wall

KC Huang, Bioengineering Stanford University UCSB, May 19, 2011

Thanks

Ned Wingreen Josh Shaevitz Steven Wang

What rules govern how cells choose their shape?

What rules govern how cells grow?

The Selective Value of Bacterial Shape Kevin D. Young*

INTRODUCTION

It's not in the open we feel comforted but in the shadows. ... We can't feel at home with the infinite sky above and around us. Space must be cut off, shaped, defined, for us to inhabit. From cradle to coffin, it's enclosure that defines us. —Robert Morgan (221)

To be brutally honest, few people care that bacteria have different shapes. Which is a shame, because the bacteria seem to care very much. A simple way to verify this is to take a leisurely stroll through *Bergey's Manual of Determinative Bacteriology* (133) or *The Prokaryotes* (65, 313), pausing to admire the surprising and bewildering riot of shapes, sizes, and aggregates, some of which are illustrated in Fig. 1. There are cells

(Champion PNAS 2006)

- Importance of shape to cellular processes
 Predation, immunity, differentiation, ...
- Introduction to the bacterial cell wall
- Modeling the E. coli cell wall
 - -Robustness of cell shape to damage
 - -Cell shape determination
 - -Cell shape maintenance
- How do cells grow?

Cell wall determines cell shape

Cell wall determines cell shape

Cell wall determines cell shape

Spheroplast (membrane)

Martinac PNAS 1987

Sacculus (cell wall)

Holtje MMBR 1998

The cell wall is necessary and sufficient for cell shape determination

Young MMBR 2006, microbiological-garden.net

Young MMBR 2006, microbiological-garden.net

Young MMBR 2006, microbiological-garden.net

Stationary phase, MreB knockout

Shih MolMicro 2005

Point mutations

Varma JBact 2007

Exponential phase

Astragraphics

Stationary phase, MreB knockout

Shih MolMicro 2005

Genetic knockout

Varma JBact 2008

Point mutations

Varma JBact 2007

Chemical perturbation

Varma JBact 2007

Exponential phase

Astragraphics

Cells grow into (and maintain) shapes defined by the chamber

Cabeen and Jacobs-Wagner NatureRevMicro 2005

Cell wall is the stress-bearing structure

Cell wall is a peptidesugar network (peptidoglycan)

- E. coli cell wall is 75-80% single layered (2-3nm thickness).
- Glycans polymerized as strands of 50-60 subunits.
- Approximately 50% of peptides are crosslinked.
 biochemistry
- Isolated cell walls (sacculi) are 2-3 times more deformable along the long axis than in the perpendicular direction.

- Spring network of peptides and glycans with hoops of glycans oriented along the circumference
- Osmotic pressure acts on the surface ($\mathbf{F} = \Pi dV/d\mathbf{r}$)

Macroscopic observables lead to microscopic parameters

Bacterial cell wall

(*imp4213* strain: Sampson et al, Genetics 1989, Tom Silhavy)

In response to vancomycin, cells "crack" around the bulge

Normal modes of cell shape

 Single peptide defect couples strongly to the bend mode

 Single glycan defect couples to both twist and bend modes

Common cell shapes via spatial patterning of defects

Caulobacter crescentus

Villiam Nierman

Spirochaetes

Peptidoglycan Crosslinking Relaxation Promotes *Helicobacter pylori*'s Helical Shape and Stomach Colonization

Laura K. Sycuro,^{1,3} Zachary Pincus,⁴ Kimberley D. Gutierrez,² Jacob Biboy,⁵ Chelsea A. Stern,^{2,3} Waldemar Vollmer,⁵ and Nina R. Salama^{2,3,*}

¹Molecular and Cellular Biology Graduate Program

²Department of Microbiology

University of Washington, Seattle, WA 98195, USA

³Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA

⁴Department of Molecular, Cellular, and Developmental Biology, Yale University, N€

⁵Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, New

*Correspondence: nsalama@fhcrc.org

DOI 10.1016/j.cell.2010.03.046

Hypothesis: Spatial patterning of new insertion affects shapes of growing bacteria

Modes of growth

Modes of growth

Insertion of new material

Vary spatial, biochemical, and mechanical characteristics

Random insertion

Random strand insertion

Decouple wall density and insertion

Decouple wall density and insertion

Decouple wall density and insertion

Uniform density insertion preserves cell shape

What biological factor could be responsible?

- Patterns cell-wall growth
- Insensitive to fluctuations in cell shape
- Deletion affects cell shape
- Conserved across bacteria

Cell growth without MreB

- Bacterial actin homolog
- Found in rod-shaped bacteria
- ATP binding, inhibited by A22

Cell growth without MreB

- Bacterial actin homolog
- Found in rod-shaped bacteria
- ATP binding, inhibited by A22

Gitai et al. (2005) Cell 120:329.

Cell growth without MreB

- Bacterial actin homolog
- Found in rod-shaped bacteria
- ATP binding, inhibited by A22

A22 in ATP-binding pocket

Gitai et al. (2005) Cell 120:329.

Role of MreB in rod-shaped growth

Stiffness is comparable to cell wall

Wang et al. (2010) PNAS 107:9182

MreB controls PBP2 localization

Figge MolMicro (2004)

MreB is left-handed!

Helically patterned insertion

Helical-insertion growth preserves shape

What is the effect of helical insertion?

Cell wall rotation

Left-handed rotation during growth

(Steven Wang and Josh Shaevitz, Princeton)

Rotation is always left-handed!

Bead twisting

Helix angle vs. twist angle

Rotation is MreB-dependent

Rotation is MreB-dependent

Osmotic shock

Osmotic shock

Osmotic shock

Twist in other species

B. Subtilis (**right-handed cytoskeleton**) 18±6 degrees/μm right-handed

Can we design the shape of bacteria?

Conclusions

- Cell shape maintenance relies on a combination of spatial patterning, biochemical regulation, and mechanical force
- Modeling can be used to interpret molecular mechanisms underlying cell growth
- Predictions about mechanisms for altering cellular dimensions

