Stretching flexible (bio)polymers

Omar A. Saleh

Materials Department and BMSE Program

University of California, Santa Barbara

Acknowledgements

Dustin McIntosh Andrew Dittmore

Publications

Saleh et al., PRL (2009) McIntosh et al., PRE (2009) McIntosh et al., Macromolecules (2011) Dittmore et al., In submission Funding
UCSB MRL
NSF
HFSP

NIH

Stretching single flexible (bio)polymers: Unexplored Territory

Nearly all stretching experiments are done in the highly-aligned regime:

Force
$$f > f_c = k_B T/l$$
 Kuhn Length

Proteins: $l \sim 1 \text{ nm}, f_c \sim 4 \text{ pN}, \text{ but it folds!}$ [Rief et al., 1997]

dsDNA: $l \sim 100 \text{ nm}, f_c \sim 0.1 \text{ pN}$ [Bustamante, Marko, Siggia, et al., 1994]

 $f < f_c$: Unexplored!

What is interesting about low forces?

- Low force is closer to zero force
 - Relevance to applications; swelling
- Low force is not high force
 - deformations
- Some new polymer physics
- Sensitivity to electrostatics

The tensile screening length, $\xi \equiv kT/f$

Highly aligned: $\xi < l$

Low-force regime: $\xi > l$

Low-force elasticity:

A transition whenever $\xi \sim \text{(char. length)}$

 R_o polymer extent; b thermal blob extent; l Kuhn length

log(Force)

Netz, Macromolecules (2001) McIntosh et al., PRE (2009)

Long polymers are swollen

Crossover size:

Short polymers are ideal

Microscopic Parameters

- Kuhn length l
- \bullet Excluded volume ${\cal V}$

Low-force elasticity:

A transition whenever $\xi \sim \text{(char. length)}$

 R_o polymer extent; b thermal blob extent; l Kuhn length

log(Force)

Netz, Macromolecules (2001) McIntosh et al., PRE (2009)

Experiments:

Accessing the real polymer regime ($\xi > l$) requires:

- 1. Low forces (large ξ)
 - ► The Magnetic Tweezer

2. A highly flexible polymer (small *l*)

The magnetic tweezer

Key: The MT is unsurpassed in the ability to stably apply small forces

Accessing the real polymer regime $(\xi > l)$ requires:

- 1. Low forces (large ξ)
 - ► The Magnetic Tweezer

- 2. A highly flexible polymer (small *l*)
 - ► Single-stranded DNA
 - **PEG**

Nucleic acid structure

dsDNA

Highly-charged and rigid ($l \approx 100 \text{ nm}$)

Highly-charged and flexible ($l \approx \text{a few nm}$)

Caveat: must remove intrastrand basepairing w/ special sequences or chemistry (glyoxal; Mcmaster and Carmichael, 1977)

Force/extension behavior of ssDNA at various [Na]

Scale f/ext data by crossover point (f_c , L_c): Universal behavior for 20-2000 mM

- 1. All salt dependence is captured in (f_c, L_c)
- 2. Clear observation of Pincus regime, $L \sim f^{2/3}$
- 3. Direct transition from Pincus to sub-linear regime ...what happened to regime III (ideal coils)?

log(Force)

Let's look at another polymer...

Low-force stretching of PEG

- 1. Regime III appears!
- 2. Transition at 2 pN?
- 3. MS-WLC fits highly-aligned regime

An aside: Stretching makes a polymer flexible


```
0.7—2 pN: l ~ 1.1 nm

(from slope of ideal regime)

4—15 pN: l~0.9 nm

(from MS-WLC fit)

>25 pN: l~0.76 nm

Kienberger et al. (2000)
```

High force \square Small $\xi \square$ Screening of neighboring monomers \square Reduced stiffness

Livadaru, Netz and Kreuzer (2003) Toan and Thirumalai (2010) Dobrynin, Carrillo and Rubinstein (2010)

- 1. Regime III appears!
- 2. Transition at 2 pN?
- 3. MS-WLC fits highly-aligned regime

Regime II kind of small; do we believe it?

Support for msmt of onset of excluded volume:

Modulating solvent quality through water structure causes first regime II, then III, to disappear

Why the difference?

Presence/lack of regime III consistent with aspect ratio of monomers

Thermal blob size: $b \sim l^4/v$ If the statistical monomers are spherical:

$$v \sim l^3 \square b_{spherical} \sim l$$

So $\xi \sim b$ coincides with $\xi \sim l$, and the ideal-coil regime (III) disappears

Polymers with spherical monomers

Mixed-base ssDNA: dominated by (isotropic) e-statics

Polymers with rod-like monomers

PEG: dominated by n.n. interactions (bond rotations)

Part 2: Electrostatics

log(Force)

Many parameters from one f/ext curve: PEG in 25°C water

Contour length (per monomer)	Persistence length	Thermal blob size	Kuhn length	Excluded volume
L = 0.31 nm	p = 0.47 nm	b = 0.6 nm	l = 1.1 nm	$v = 0.2 \text{ nm}^3$
From high-force fit to the Marko-Siggia wormlike chain model		From $b \sim k_B T / f^*$	From linear elastic regime slope	From $v \sim l^4/b$

Force/extension behavior of ssDNA at various [Na]

Re-scaled by f_c , L_c : Universal behavior Scaling picture: $l([NaCl]) \sim kT/f_c$

Crossover force/length gives scaling of *l* with salt

$$l_e \sim c^{-0.51 \pm 0.04} \sim \kappa^{-1}$$

Some history $l = l_o + l_e(c)$

Intrinsic

Electrostatic

Behavior	Theory	Experiment
$l_e \sim \kappa^{-2} \sim c^{-1}$	OSF (1977): $l_o >> \kappa^{-1}$ KK (1982): all l_o BJ (1993): $l_o >> \kappa^{-1}$ Everaers et al. (2002): all l_o	Baumann (1997): 1-mol, dsDNA Proper excl. vol.
		considerations
$l_e \sim \kappa^{-1} \sim c^{-0.5}$	BJ (1993): $l_o < \kappa^{-1}$ Dobrynin (2005): all $l_{o,}$ torsionally-free	Reed (1991): scattering, flexible chain Beer (1997) scattering, flexible chain
		Tinland (1997): diffusion, ssDNA

Our work on ssDNA:

Unlike scattering, we rely on a simple scaling model that directly accounts for excluded volume (thus swelling cannot rectify the discrepancy with OSF)

Our current conclusion: either

- 1) OSF does not apply to flexible polymers
- 2) Our assumption of $f_c \sim kT/l$ is wrong

So far: only up to [NaCl] = 2 M... What happens at higher salt?

Expectation:

At high salt, monomer repulsions/attractions cancel, leading to a theta condition (v = 0)

Ideal and real behavior are easily distinguished:

	Linear response $(\xi > R)$	Intermediate force $(R > \xi > b)$
Real	$L \sim f$	$L \sim f^{2/3}$
Ideal	$L \sim f$	$L \sim f$

Ideal f/ext models work at the θ -point: WLC model fits, with $l_{p,o} = 0.65 \text{ nm}$

Divalent cations:

Qualitatively similar, quantitatively different

Upon rescaling: Universality among, but not between, valencies

20-1,000 mM monovalent salts 0.2-5 mM divalent salts

 \overline{f} : Transition force out of Pincus regime

ssDNA becomes flexible extraordinarily quickly in divalent salt

Theta point shifts 100-fold in divalents

Similar effects seen in RNA folding studies (Heilman-Miller *et al.*, 2001) and dsDNA SAXS studies (Qiu *et al.*, 2006, 2007)

Difference between 1⁺ and 2⁺ at Θ: Hydrated, condensed ion thermodynamics

The condition for constant charge density (w/ hydrated ions)

$$\longrightarrow c_1/c_2 \sim 50$$

Summary:There's plenty of room at the bottom

PEG: rod-like monomers; identifiable t-blob regime

ssDNA: spherical monomers; no t-blobs

Monovalent salt: $l \sim I^{-1/2}$

Divalent salt: $l \sim I^{-3}$, Theta 100x lower

Open questions:

- OSF?
- ssDNA in monovalent at high forces: $L \sim \ln(F)$; why?
- ssDNA in divalent: $l \sim I^{-3}$; why?

Publications

Saleh et al., PRL (2009) McIntosh et al., PRE (2009) McIntosh et al., Macromolecules (2011) Dittmore et al., In submission

A quick plug: Conference presentations

Dustin McIntosh will present aspects of this work, with more on poly(dA)

Jun Lin will present work on stretching dsDNA confined in nanochannels

An actual device

An actual student doing work

Image analysis gives 3D Bead position with ~ 1 nm resolution in real-time at 60 Hz

Lateral (x,y) position:

Found from FFT-based correlation algorithm

Vertical (z) position:

Found by analysis of diffraction rings

Gosse and Croquette, RSI (2002)

Measuring the force using fluctuations

Fig. 1 from Everaers et al. (2002)

Normalized polymer length

High force Low force

The low-force power-law becomes linear at [NaCl] ≈ 3 M

Beyond 3 M: $\gamma > 1$, corresponding to aggregation: In poor solvent, $R \sim N^{1/3}$, giving $L \sim f^2$; but surface tension will cause $\gamma > 2$ (Morrison *et al.*, 2007)

Much smaller concentrations of divalent salt give similar elasticity

PEG structure

Proposed helical structure in water