

# Fluctuations, backtracking and proofreading in Transcription

Tanniemola B Liverpool
Department of Mathematics
University of Bristol



# Acknowledgements

In collaboration with

M Voliotis

(Mathematics, Bristol)

N Cohen and C Molina-París

(Applied Maths & Computing, Leeds)





Engineering and Physical Sciences Research Council





#### Plan

- Fluctuations, pauses and backtracking in transcription
  - 1. Motivation stochastic gene expression
  - 2. RNAP: microscopics of transcription
  - 3. Pauses and bactracking  $\Rightarrow$  single molecule experiments
  - 4. Distribution of elongation times
  - Integrated model of transcription ⇒ RNA population dynamics
  - 6. A model for proofreading in transcription
- 2. Conclusions and outlook



# Gene expression

#### **Central Dogma**

DNA ⇒ RNA ⇒ protein

Transcription Translation

Gene expression = set of reactions that control quantities of gene products (proteins)

Differences in gene expression is thought to control most aspects of cellular behaviour ⇒ phenotype



However even within related cells of the same phenotype there are variations in the levels of expressed genes



# Variations in gene expression

#### Standard 'systems' view

Microarray, Northern blot, RT-PCR experiments

Bulk RNA/protein levels from 'homogeneous' population extracts

Gives impression of gene expression as continuous smooth process

**BUT** highly irregular ⇒ periods of activity and inactivity



#### Fluctuations in space and time

Important: differences in transcription/translation between related cells ⇒ differentiation, disease, ...



# Stochastic Gene expression

Fluctuations ⇒ quantify variability of cellular behaviour

Fluctuations can be due to intrinsic or extrinsic factors (somewhat vague operational definition)

New observational techniques

of RNA transcription products

#### Sources of fluctuations

Macroscopic fluctuations in environment
Variability of internal state of cell
Genetic mutation
Small numbers of macromolecules involved in
gene regulation/expression
Stochastic nature of production and degradation

Raser & O'Shea (2005)

**Twins** 

Texas A&M

Copy Cat

Genetic Savings and Clone inc.

E-Coli





Elowitz et al (2002)

KITP, May 2011

# Modelling Fluctuations

#### **Chemical Master equations**

■True for some experiments

Discrete reactants , probabilistic chemical reactions Transcription and translation as one-stage processes Poisson population statistics  $\frac{\sigma_{\text{mRNA}}^2}{\mu_{\text{mBNA}}} = 1$ 

Zenklusen et al, Nature Struc. Mol. Biol. (2008)

However production/degradation of proteins/mRNAUT recent expts. tracking RNA are multi-stage processes

expression levels in single cells see non-Poissonian fluctuations

Transcription ⇒ 3 main stages
Initiation
Elongation
Termination

 $\frac{\sigma_{\text{\tiny mRNA}}^2}{\mu_{\text{\tiny mRNA}}} > 1$ 

Golding et al, Cell (2005)

Raj et al, PLOS Biology (2006)

How consistent is this with simple exponential •Alternative processes? birth/death Markov processes which give Poisson statistics?

Chubb and Liverpool, Current Opinion in Genetics and Dev. (2010)

## Chemical master equations

Prob of 
$$n$$
 molecules Production rate Degradation rate 
$$\lambda_t P_n = \lambda_+ P_{n-1} - \lambda_- \, n \, P_n - \lambda_+ P_n + \lambda_- (n+1) \, P_{n+1}$$

- Single timescales
- Steady state distribution is Poisson

$$P_n = \frac{1}{n!} \mu^n e^{-\mu} \quad \lambda_- = \lambda_+ \mu e^{-\mu}$$
  $\langle n \rangle = \mu \quad ; \quad \sigma^2 \equiv \langle n^2 - \langle n \rangle^2 \rangle = \mu$ 

COMPLEX

 $\lambda_i$  (everything else)

### Transcription: DNA ⇒ mRNA

RNA polymerase (~ 150 KDa)



#### Benoit Coulombe (Montreal)





Greive & von Hippel, (2005)

- Nobel prize for Medicine 1965, F. Jacob,
   J. Monod and A. Lwoff (prokaryotic)
- Nobel prize for Chemistry 2006, Roger Kornberg (eukaryotic RNAP)

# Single molecule experiments

**Elongation phase** 



Optical tweezer experiments

Pauses of E-Coli RNAP observed in-vitro Operationally experiments classified into 'short' (< 20s) and 'long' pauses Backtracking of E-Coli RNAP observed during long pauses.

Shaevitz et al, Nature, **426**, 684 (2003)

Backtracking ⇒ rearwards motion of RNAP along DNA template in direction opposite to normal elongation

Shift of transcription bubble, however DNA-RNA hybrid remains in register, 3' end of RNA moves away from active site

**Broad non-exponential temporal distribution of 'long' pauses** 



RNAP transcribes with remarkably low error rate in-vivo Has recently been suggested that back-tracking is involved in proofreading

# Pipe dreams ...

**Dynamical question -** To understand how the **complex** behaviour of cells controlled by the expression of their genes **emerges** from their components.



Some much smaller goals - using simple physical models ...

- •Can we understand *something* about the origin of intrinsic fluctuations from the **bottom up**?
- Can we link single molecule behaviour to gene expression experiments at the cellular level?



### A theoretical model of transcription

Based on biochemical mechanism proposed by Yager and von Hippel, *Biochemistry*, 30, 1097 (1991)

#### ✓ Initiation - Poisson process Elongation phase

• Position of last transcribed nucleotide  $\Rightarrow n$  (size of transcribed mRNA)

• Position of polymerase active site relative to  $n \Rightarrow m$ 

$$-n < m < 1$$



*m*=0 pre-translocated*m*=1 post-translocated*m*<0 backtracked</li>

- Polymerisation ( + new nucleotide) only from post-translocated state
- Depolymerisation ( new nucleotide) only from pre-translocated state

$$(n, m = 0) \rightleftharpoons (n, m = 1)$$
  
 $(n, m = 1) \rightleftharpoons (n + 1, m = 0)$ 

• Initiation (n=0) and termination (n=N)



### Model of transcription elongation



#### **Schematic of state transitions**

Backtracking restricted to -M > -n (hairpins, cleavage,...)

We want to find the statistics of the elongation time (time to get from n=0 to n=N)

First passage problem



### Model A: no backtracking



#### **Schematic of state transitions**

Backtracking restricted to -M > -n (hairpins, cleavage,...)

We want to find the statistics of the elongation time (time to get from n=0 to n=N)

#### **Model A : translocation limited polymerisation**

$$\frac{\partial P_{n,0}}{\partial t} = k_f P_{n-1,1} + b P_{n,1} - (k_b + a) P_{n,0} 
\frac{\partial P_{n,1}}{\partial t} = k_b P_{n+1,0} + a P_{n,0} - (k_f + b) P_{n,1}$$

$$\begin{array}{ccc} \text{polymerisation} & \Rightarrow & k_f \\ \text{depolymerisation} & \Rightarrow & k_b \\ \text{forward translocation} & \Rightarrow & a \\ \text{backward translocation} & \Rightarrow & b \end{array}$$

Reflecting BC (n=0)Absorbing BC (n=N)

#### Mean field approximation: $k_f, k_b \ll a, b$

$$\frac{\partial}{\partial t}\mathcal{P}_n = p_-\mathcal{P}_{n+1} + p_+\mathcal{P}_{n-1} - (p_+ + p_-)\mathcal{P}_n \qquad p_+ \approx \frac{k_f a}{a+b} \qquad p_- \approx \frac{k_b b}{a+b}$$

biased random walk

Voliotis et al, Biophys. J, **94**, 334 (2008)

First passage problem easy

KITP, May 2011



## Model A: no backtracking

We want to find the statistics of the elongation time (time to get from n=0 to n=N)

- Under normal conditions, polymerisation overwhelmingly favoured over depolymerisation  $p_-$
- Mean elongation time,  $\mu_t$  and variance  $\sigma_t^2$

$$\mu_t = \langle t \rangle = \frac{N}{p_+} + K \frac{(N-1)}{p_+} + \mathcal{O}(K^2),$$

$$\sigma_t^2 = \langle t^2 \rangle - \langle t \rangle^2 = \frac{N}{p_+^2} + K \frac{(4N-4)}{p_+^2} + \mathcal{O}(K^2).$$

- For large N, approaches a Gaussian
- ⇒ Fluctuations smaller than exponential process (⇒ mRNA **Population** sub-Poisson)

$$\sigma_t^2/\langle t \rangle^2 = 1/N \to 0$$

M Voliotis et al, Biophys. J, 94, 334 (2008)

$$K = \frac{p_-}{p_+} \ll 1$$

• Compare with Monte Carlo simulations of full model





## A model for backtracking pauses

Before we include pauses in our dynamics we need a model for backtracking pauses themselves.

Can we explain the broad distribution of pause durations?

- A pause starts when the TEC enters the state m=-1 from the state m=0
- From m=-1, TEC hops across backtracked states with hopping rate c
- Because of hairpins, RNA-DNA interactions backtracking is restricted and proceeds up to m=-M for M < n and up to m=-n for n > M







# Dynamics of backtracking pauses

Use new variable l=-m where  $1 \le l \le M$ 

Probability of finding polymerase starting at l=1 at t=0 at position l at time t is P(l,t)

$$\frac{\partial}{\partial t}P(l,t) = c P(l+1,t) + c P(l-1,t) - 2c P(l,t)$$

- Obtain the time to terminate a pause by returning to state l=0
- First passage problem in a finite domain with reflecting BC's

$$c P(M,t) = c P(M+1,t)$$
 (reflecting)  
 $P(0,t) = 0$  (absorbing)

- Probability flux to the state  $l=0 \Leftrightarrow$  probability of exiting the pause at time t F(0,t)=cP(1,t)
- Can do a similar calculation when there is transcript arrest (absorbing BC's both sides)



# Dynamics of backtracking

Series & asymptotic expansion of  $\theta_1$  function used to obtain limiting behaviour.

$$\mathcal{P}(t) = \frac{(1+M)}{\sqrt{\pi}\sqrt{c} t^{3/2}} \sum_{n=-\infty}^{n=+\infty} (-1)^n e^{-\frac{(1+M)^2}{ct} \left(n - \frac{1}{2M}\right)^2} \left(n - \frac{1}{2M}\right)$$

$$\mathcal{P}(t) \approx \left\{ \begin{array}{ll} \frac{1}{2\sqrt{\pi}\sqrt{c}t^{3/2}} &, \frac{1}{c} \ll t \ll \frac{M^2}{c}, \\ \frac{\pi c \sin\left(\frac{\pi}{2(M+1)}\right)}{(1+M)^2} e^{-\frac{c\pi^2}{4(1+M)^2}t} &, t \gg \frac{M^2}{c}. \end{array} \right.$$

Mean pause duration  $\langle t \rangle = \frac{M}{c}$ 

Power law behaviour for  $t << M^2/c$   $\Leftrightarrow$  heavy-tailed distribution observed by Shaevitz et al.

M Voliotis et al, Biophys. J, **94**, 334 (2008)





### Single molecule experiments

Recent quantitative experiments of pause distributions of

eukaryotic RNAP II Galburt et al, Nature (2007)







Power law with  $t^{-3/2}$ ?



#### Model B: transcription with pauses



Now we are in the position to study a model for elongation with pauses

#### **Macroscopic observables**

- o Number of pauses  $\delta$  over a DNA template of length N
- o Sum of lifetime of pauses relative to time spent on active polymerisation

$$\frac{N}{p_+} \gg \delta \frac{M}{c}$$

$$rac{\delta}{N} = rac{drac{a}{a+b}}{drac{a}{a+b} + p_+ + p_-} = rac{d'}{d' + p_+ + p_-}$$

Pauses negligible - model A

$$\frac{N}{p_{+}} \ll \delta \frac{M}{c}$$

Pauses dominate elongation time



### Model B: transcription with pauses

When translocation not the rate-limiting step  $p_+ \gg d$ 

If polymerisation favoured

$$p_+ \gg p_-$$

Define 
$$R = d' \frac{M}{g}$$

#### $R \gg 1$ Pauses dominate



As R ↑, distribution becomes broader



 $R \ll 1$  Pauses negligible



### Integrated model of mRNA production

We are really interested in mRNA levels in the cell  $\Rightarrow$  Need to consider

production (transcription) and degradation

Initiation + model B + termination(fast) + degradation  $k_i$   $k_d$ 

Many initiations can occur in the time to produce a single RNA ⇒ multiple occupation of DNA template by TECs moving in tandem

S.L. Gotta et al, *J. Bacteriol.*, **173**, 6647 (1991)

DNA

End

Each polymerase synthesizing a nascent mRNA

'Christmas Tree'

Polymerases cannot get too close because of additional work to deform the DNA helix



Begin



#### Model of mRNA production



Minimum (exclusion) distance between TEC's

$$L \ll N$$

Active site of a TEC with (n,m) is at position

$$x = n + m$$

$$|x_1 - x_2| < L$$

#### **Relevant timescales**

Time for transcription initiation  $au_1=1/k_i$ Time needed by the TEC to transcribe L nucleotides  $au_2 \approx L/p_+$ The mean time of a backtracking pause  $au_2=M/c$ 

Study numerically using MC simulations



#### Model of mRNA production

When initiation is the rate limiting step

$$au_1\gg au_2, au_3$$
 (approx Poisson)  $\mu_{ ext{mRNA}}=\sigma_{ ext{mRNA}}^2$ 

Polymerisation is the rate limiting step

$$au_2\gg au_1, au_3 \qquad ext{(Sub-Poisson)} \ \mu_{
m mRNA}>\sigma_{
m mRNA}^2$$

Long pauses dominate transcription

$$au_3 \gg au_1, au_2$$
 (Super-Poisson)  $\mu_{
m mRNA} < \sigma_{
m mRNA}^2$ 

**Bursts** of RNA production due to rare and longlived pauses of TECs acting as congestion points

Switches between states of high and low mRNA production





### Relation to ASEP?

The Asymmetric Simple Exclusion Process

B. Derrida, *Phys. Rep.*, **301**, 65 (1998).

1-d non-equilibrium model been subject of much study





M.R. Evans et al, *PRL*, **74**, 208 (1995)



### mRNA populations in E-Coli

Direct measurement of mRNA populations

mRNAs with 96 MS2 binding site

#### MS2-GFP fusion protein



Golding et al, Cell, **123**, 1025 (2005)



$$\Delta t_{
m OFF}pprox 37min$$
 $\Delta t_{
m ON}pprox 6min$ 

#### Numbers

Polymerisation rate: 25bp/s-50 bp/s Shaevitz et al (2005)

Depolymerisation rate: two orders magnitude lower

mRNA degradation rate: 0.014/min Golding et al (2005)

Rate of entering back-tracking state

= rate of NTP misincorporation: 1 error/kbp

Rate of backtracking diffusion c: 0.1-0.2 bp/s

Initiation rate  $\approx 0.1/s \implies$  bursting.

 $t_{\text{ON}} \approx \min$  $t_{\text{OFF}} \approx 10 \min$ 

But what about stochastic dynamics of transcription factor binding?



### Backtracking & error correction ...

Thermodynamic fraction of misincorporated nucleotides  $\sim 10^{-2} - 10^{-3}$ 

Observed transcriptional error fraction  $\sim 10^{-5}$ 

**Kinetic proofreading**: there must exist an active mechanism of error correction

Hopfield, Proc. Natl. Acad. Sci. (1974) Ninio, Biochimie 57, 587 (1975)

$$E + S_c \stackrel{k'_c}{\rightleftharpoons} ES_c \stackrel{\alpha_c}{\rightleftharpoons}$$

$$E + P_c$$

Requires a branching process

$$E + S_w \stackrel{k'_w}{\rightleftharpoons} ES_w \stackrel{\alpha_w}{\rightleftharpoons}$$

$$E + P_w$$

Possible mechanism circumstantial evidence

Limiting **error fraction**  $\mathcal{E}_0 = \frac{k_c}{k} = e^{-\beta \Delta G}$ 

$$\mathcal{E}_0 = \frac{k_c}{k_{cor}} = e^{-\beta \Delta G}$$

Backtracking mRNA cleavage (Gre, TFIIS)



### Backtracking & error correction ...

Thermodynamic fraction of misincorporated nucleotides  $\sim 10^{-2} - 10^{-3}$ 

Observed transcriptional error fraction  $\sim 10^{-5}$ 

**Kinetic proofreading**: there must exist an active mechanism of error correction

Hopfield, Proc. Natl. Acad. Sci. (1974) Ninio, Biochimie 57, 587 (1975)

$$E + S_{c} \quad \stackrel{k'_{c}}{\rightleftharpoons} \quad ES_{c} \quad \stackrel{\alpha_{c}}{\Rightarrow} \quad ES_{c}^{*} \quad \stackrel{\beta_{c}}{\Rightarrow} \quad E + P_{c}$$

$$\downarrow l_{c}$$

$$E + S_{c}$$

$$E + S_{w} \quad \stackrel{k'_{w}}{\rightleftharpoons} \quad ES_{w} \quad \stackrel{\alpha_{w}}{\Rightarrow} \quad ES_{w}^{*} \quad \stackrel{\beta_{w}}{\Rightarrow} \quad E + P_{w}$$

$$\downarrow l_{w}$$

$$\downarrow l_{w}$$

$$E + S_{w}$$

$$\mathcal{E} = \frac{k_{c}}{k_{w}} \frac{l_{c}}{l_{w}} = \mathcal{E}_{0}^{2}$$

$$\alpha_{j}, \beta_{i} \ll k_{j}, l_{i}$$

Requires a branching process

# Possible mechanism - circumstantial evidence

• • •

Backtracking mRNA cleavage (Gre, TFIIS)

KITP, May 2011



# Backtracking & error correction



⇒ Renormalized Error fraction : ratio

of wrong to correct nucleotides

Voliotis et al, PRL, **102**, 258101 (2009)





State of TEC given by (n,m)

 $n \in [0, N]$  - last transcribed nucleotide

 $m \in [0, M]$  - position of active site relative to n

At each nucleotide position (n,0):

correct nucleotide  $k_p$  wrong nucleotide  $\bar{k}_p$  backtrack  $k_b$ .

Cleave at rate  $k_c$ 

Error at position l



Voliotis et al, PRL, **102**, 258101 (2009)





$$\frac{\bar{k}_p}{k_p} = e^{-\beta \Delta G} = \mathcal{E}_0$$

Many possible energy landscapes, take for example ...



Quantities of interest that characterise the different competing processes

$$lpha_1 = k_c/c$$
 $lpha_2 = k_c/\bar{c} = lpha_1/\epsilon$ 
 $K = k_p/k_b$ 

Voliotis et al, PRL, **102**, 258101 (2009)





Dynamics described using Master eqn.

$$\frac{d\mathbf{P}}{dt} = \mathbf{W}^{(s)} \cdot \mathbf{P} \qquad \mathbf{P}(t) = [P(0, t), \dots, P(M, t)]$$

 $s = \underbrace{\{0, 1, \dots, 0\}}$ 

n elements

Where *s* is a binary string that keeps track of correct and wrong nucleotides along the nascent mRNA,

- • $s_i = 0$  wrong nucleotide at position i
- • $s_i = 1$  correct nucleotide at position i

 $\mathbf{W}^{(s)}$  - denotes the dependence of the rates on the sequence of correct and wrong nucleotides.

- •Polymerise correct nucleotide  $(n,0) \rightarrow (n+1^c,0)$
- •Polymerise wrong nucleotide  $(n,0) \rightarrow (n+1^w,0)$
- •Cleave from any backtracked state  $(n, m=l>0) \rightarrow (n-l, 0)$
- •Using Laplace transform techniques we can obtain the splitting probabilities  $p_i$  for each of the m+2 outcomes as well as their conditional mean exit time  $\tau_i$



For 
$$K = k_b/k_p \gg 1$$
 Error fraction  $\mathcal{E} \sim \frac{\epsilon^{M+1} M^M}{M!}$ 

boundary  $M \Rightarrow M$  attempts to correct an error

Unrealistic to think that backtracking rate unchanged by error and  $K\gg 1$ 



Presence of error leads to 'renormalization' of  $K \Rightarrow K^* \simeq K \bar{k}_b/k_b$ 

 $\Rightarrow$  Can have effective  $K^* \gg 1$  even if K < 1 when no error present KITP, May 2011



#### **Numbers**

Spontaneous error fraction :  $10^{-2}$  –  $10^{-3}$  ( $\Delta G \approx 4$  – 7kB T ) [1].

#### Blank et al, *Biochemistry* (1986)

The cleavage rate: 0.1 - 1s-1 for bacterial RNAP in the presence of saturating concentrations of accessory cleavage factors

Sosunova et al, PNAS (2003)

Hopping rate : 1 - 10 s-1 [3,4]. Relative backtracking rate, K ~ 0.1

Galburt et al, Nature (2007); Shaevitz et al, Nature (2003)



#### Conclusions

- single step birth/death models not sufficient to model fluctuations in gene transcription
- a model of back-tracking pauses show that they can play a significant role in determining fluctuations
- Single step models valid if initiation is rate-limiting step
- Inclusion of pausing dynamics with multiple RNAs on DNA template leads to bursting dynamics
- Backtracking can be used as model for proofreading in transcription



### Perspectives

```
elongation under force ...

transcript arrest in integrated model ...

sequence dependence ...

translation ..

bursting dynamics in gene expression ...
```