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Introduction

dS/CFT

As several people mentioned yesterday, we’d like to have some idea like
AdS/CFT that works in a more “cosmological” setting.

The most “obvious” proposal around is “dS/CFT” (Witten, Strominger,
Maldacena). The idea is that:

ΨHH [gµνε
−2, φ(x)ε∆−d ] ∼ e iSct [φ,ε]

∫
DMe−SCFT [g ,M]+

∫
ddx
√
gφ(x)O(x).

(1)
The motivation is to “turn AdS/CFT on the side”, or more precisely to
“analytically continue” from AdS to dS. In fact this continuation is valid
order by order in perturbation theory (Maldacena, Harlow+Stanford), so
the idea isn’t immediately crazy.
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Introduction

Popular Complaints

How can you analytically continue in N?

Making dS vacua in string theory is quite different from making AdS
vacua, in particular new ingredients are necessary and it certainly isn’t
just analytic continuation.
dS space is supposed to be unstable, doesn’t this destroy the
asymptotic boundary?
Don’t black holes tell us not to talk about global wave functions on
slices that cut across horizons?
There isn’t any SUSY so we can’t compute anything.
There aren’t any top-down examples, so we really can’t compute
anything!

For these reasons, dS/CFT has been something of a backwater until the
last year or so.
Today I will present some concrete calculations in a real example, and
along the way we will see how several of these complaints are addressed.
(work with Anninos and Denef)
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Introduction

The Sp(N) Theory

The example is due to Anninos, Hartman, and Strominger; it is based the
Klebanov/Polyakov duality between the O(N) vector model and Vasilliev’s
higher spin bulk gravity.

The action:

SCFT =

∫
d3x
√
g

[
1

2
Ωab∂µχ

a∂µχb +
1

16
R[g ]Ωabχ

aχb

]
(2)

The χa’s are Grassman scalars transforming in the N dimensional
representation of Sp(N). (N is even).
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Introduction

Properties of the Sp(N) Theory

It is conformal, with a whole set of primary conserved currents, of the
form

Jµ1...µs ≡ Ωabχ
a(∂µ1 ...∂µs )χ

b. (3)

These are dual to massless bulk fields with spins s = 0, 2, 4, . . ..

Its Feynman rules are related to those of the usual O(N) vector
model by N → −N, so this realizes the analytic continuation in a
non-perturbative setting.

The spectrum of operators matches Vassiliev’s only if we impose an
Sp(N) singlet constraint; we can do this for example by weakly
gauging the Sp(N) symmetry by coupling it to Chern-Simons with
k →∞ (Shenker, Yin).

It is free!
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Introduction

Finite Deformations

Our goal is thus to compute the partition function of this theory with
the sources for some of these operators turned on to finite values.

Turning on all of the sources is hard technically, especially because for
s ≥ 3 the operators are irrelevant! This needs to be understood
better, but our resolution for today will be to only turn on the
operators with s = 0, 2.

These are the boundary stress tensor Tµν and the “mass” Ωabχ
aχb;

they are interpreted as being dual to the bulk metric and a bulk scalar
with mass m2 = 2`2

dS .

The thing we wish to compute then is

ZCFT [g , σ] ≡ lim
k→∞

∫
DADχ exp

[
− SCS [A]− SCFT [g , χ,A]

− 1

2

∫
d3x
√
gσ(x)χ2

]
.
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Introduction

An Important Subtlety

Before proceeding to describe our results, I want to emphasize an
important point. Dio previously defined the Critical Sp(N) theory as the
IR limit of a “double-trace” deformation of the free Sp(N) theory by
(χ2)2. What is the deal with this?

Consider a general double-trace flow:

ZIR [σ̃] =

∫
DM exp

[
−SCFT + ρf σ̃O − f

2

∫
ddxO2

]
. (4)

The usual thing to do here is to introduce an auxilliary field, in terms
of which the generating functional of the IR critical theory is related
to the UV theory by a Hubbard/Stratonovich transformation.
Heuristically

ZIR [σ̃] =

∫
DσeAσ2−Bσσ̃ZUV [σ]. (5)
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Introduction

continued...

I won’t explain the details here, but in dS/CFT both A and B are
purely imaginary. The upshot of this is that we can interpret this
transformation as a unitary change of basis on the same wave
function ΨHH .

This is simpler than in AdS/CFT , where the UV theory is interpreted
as a different quantization of the bulk theory than the IR theory.

More specifically, in the critical Sp(N) theory we have

√
Nσ̃ = ε∆−dφ (6)

while in the free Sp(N) theory we have

√
Nσ = 4 (T∂Tφ− φ) . (7)
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Examples

Our Calculations

I will now describe four calculations:

A constant mass deformation on S3 in the free theory.

Zero mass deformation on S2 × S1 in the free theory.

Zero mass deformation on a squashed S3 in the free theory.

Constant mass deformation on S3 in the critical theory.
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Examples

Constant Mass on S3

On any space with S3 topology the only Chern Simons saddle point is
A = 0, so the Chern-Simons decouples and we can ignore it.

The remaning integral is Gaussian, so formally we have

ZCFT = det

(
−∇2 +

R

8
+ σ(x)

)N/2

. (8)

Some renormalization is necessary in computing this determinant; we
fix this by insisting that on a round S3

ZCFT [0] = 1 (9)

δZCFT

δσ

∣∣∣
σ=0

= 0. (10)
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Examples

S3 continued

Now choosing σ(x) = σ0, we have

logZCFT =
N

2

∞∑
`=0

(`+ 1)2

[
log

(
1 +

σ0

`(`+ 2) + 3/4

)
− σ0

`(`+ 2) + 3/4

]
.

(11)
This sum can be evaluated analytically in terms of Polylogarithms, but a
picture is more illuminating-
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Examples

-4 -2 0 2 4
0

5

10

15

This shows a plot of |Ψ|2 as a function of the zero mode of the mass. Two
interesting points

It has zeroes at σ = −3
4 − `(`+ 2) - these are fermion zero modes.

It is non-normalizeable at large negative σ!
12



Examples

Some comments on the non-normalizeability

This does NOT happen for a free massive scalar in a dS background.
In that calculation one finds

|Ψ|2 ≈ e−#σ2
(12)

for any mass and dimension.

There is a local maximum at the dS4 solution σ = 0. We claim that
this is responsible for the de Sitter-like perturbation theory.

The non-normalizeability is not felt until bulk field values that are
order −

√
N. From the bulk point of view this is an intrisincally

non-perturbative effect.

We suspect that the interpretation of this result is that de Sitter
space is not stable in Vassiliev theory; this is consistent with general
arguments about the impossibility of a stable theory of dS space.
(Goheer, Kleban, Susskind)
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Examples

S2 × S1

We can also study the theory on S2 × S1 as a function of β, the
relative size of S1 and S2 - the machinery for this calculation was
developed by many of the people in this room: (Gross, Witten,
Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk,
Shenker, Yin).

The basic point is that as k →∞ the Chern-Simons saddle points are
the moduli space of Wilson lines wrapping the S1.

This turns out to be annoying to deal with in the Sp(N) model
because Sp(N) is a real group, so for this example we will change the
symmetry group to U(N). The action now is based on terms like χ†χ
instead of χTΩχ, but the only real difference is that when we
integrate out χ’s we need to square the determinant.

We now need to choose boundary conditions for the fermions around
the S1. It turns out that in the singlet sector the choice does not
matter, as I will point out in a moment.
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the S1. It turns out that in the singlet sector the choice does not
matter, as I will point out in a moment.
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Examples

After integrating out the fermions and gauge fixing, one finds (people I
mentioned above)

Z =
1

N!

∫ ∏
i

dαi exp
[∑

i<j

log sin2[
αi − αj

2
]

− 2
∞∑

m=1

1

m
zS(mβ)

N∑
i=1

cos(mαi )
]

(13)

with

zS(mβ) = e−mβ/2 1 + e−mβ

(1− e−mβ)2
. (14)

This expression is exact, but at large N we can approximate it by looking
for a saddle point in the integral over αi (Gross/Witten).
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Examples

This system has a Gross/Witten phase transition (Yin, Shenker): for
“temperatures” low compared to

√
N the eigenvalues αi are evenly

distributed while for high temperature they all cluster around α = π.

Here is the wave function squared at low temperature:
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Examples

At high temperatures, meaning β � 1√
N

, the growth continues: we find

|Ψ|2 ≈ e3Nζ(3)β−2
. (15)

Some comments:

Unlike the case on S3, these results are not simple analytic
continuations of the AdS results. They are also NOT the inverses of
the AdS results (Hertog/Hartle). This is because the Chern-Simons
sector is not analytically continued.

This is also non-normalizeable! The interpretation is we believe less
severe than the previous non-normalizeability; S2 × S1 only appears in
a dS universe after some sort of quantum process, so it does not
necessarily indicate an instability.

Moreoever in Einstein gravity we have found that we can actually
reproduce this divergence via a Hawking-Page type semiclassical
calculation, but perhaps surprisingly it is dimension dependent. It
happens in bulk dimensions d = 6mod 4, so for four dimensions it
actually doesn’t happen!

17



Examples

At high temperatures, meaning β � 1√
N

, the growth continues: we find

|Ψ|2 ≈ e3Nζ(3)β−2
. (15)

Some comments:

Unlike the case on S3, these results are not simple analytic
continuations of the AdS results. They are also NOT the inverses of
the AdS results (Hertog/Hartle). This is because the Chern-Simons
sector is not analytically continued.

This is also non-normalizeable! The interpretation is we believe less
severe than the previous non-normalizeability; S2 × S1 only appears in
a dS universe after some sort of quantum process, so it does not
necessarily indicate an instability.

Moreoever in Einstein gravity we have found that we can actually
reproduce this divergence via a Hawking-Page type semiclassical
calculation, but perhaps surprisingly it is dimension dependent. It
happens in bulk dimensions d = 6mod 4, so for four dimensions it
actually doesn’t happen!

17



Examples

At high temperatures, meaning β � 1√
N

, the growth continues: we find

|Ψ|2 ≈ e3Nζ(3)β−2
. (15)

Some comments:

Unlike the case on S3, these results are not simple analytic
continuations of the AdS results. They are also NOT the inverses of
the AdS results (Hertog/Hartle). This is because the Chern-Simons
sector is not analytically continued.

This is also non-normalizeable! The interpretation is we believe less
severe than the previous non-normalizeability; S2 × S1 only appears in
a dS universe after some sort of quantum process, so it does not
necessarily indicate an instability.

Moreoever in Einstein gravity we have found that we can actually
reproduce this divergence via a Hawking-Page type semiclassical
calculation, but perhaps surprisingly it is dimension dependent. It
happens in bulk dimensions d = 6mod 4, so for four dimensions it
actually doesn’t happen!

17



Examples

At high temperatures, meaning β � 1√
N

, the growth continues: we find

|Ψ|2 ≈ e3Nζ(3)β−2
. (15)

Some comments:

Unlike the case on S3, these results are not simple analytic
continuations of the AdS results. They are also NOT the inverses of
the AdS results (Hertog/Hartle). This is because the Chern-Simons
sector is not analytically continued.

This is also non-normalizeable! The interpretation is we believe less
severe than the previous non-normalizeability; S2 × S1 only appears in
a dS universe after some sort of quantum process, so it does not
necessarily indicate an instability.

Moreoever in Einstein gravity we have found that we can actually
reproduce this divergence via a Hawking-Page type semiclassical
calculation, but perhaps surprisingly it is dimension dependent. It
happens in bulk dimensions d = 6mod 4, so for four dimensions it
actually doesn’t happen!

17



Examples

Squashed Sphere

We also computed the wave function for a squashed sphere:
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Note this one is normalizeable!
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Examples

Critical Mass

Finally I will briefly comment on the case a constant mass deformation on
the sphere in the critical theory.

The Hubbard/Stratonovich transformation is sensitive to the
non-normalizeability at large negative σ - the dominant saddle at
large N is NOT the one which produces the analytic continuation of
the O(N) vector model.

The reason this happens is that the contour for the auxilliary field
cannot be consistently deformed to pass through only the saddle
point close to σ = 0. This is DIFFERENT from what happens in the
AdS case, where indeed a careful study of the integration contour
confirms use of the usual perturbative saddle point.
This means that the perturbative fixed point one computes by
summing cactus diagrams is not what the double trace flow from the
free theory actually produces! The dominant saddle point is far off at
negative σ, and it goes off to infinity at late times. The reason is that
probability is constantly flowing out to negative σ, and going back to
field space the wave function is very time dependent.
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Examples

There is a way to try to ameliorate this: just say that σ > −3
4 .

With this prescription the wave function is normalizeable, and one can
show that the contour can now be deformed in such a way that the
naive cactus perturbation theory is correct.

This however is NOT dS/CFT. It is dS/CFT only up to an additional
rule. It is also extremely unnatural from the bulk point of view; why
should T∂Tφ− φ have probability zero to be less than −3/4?

Our suspicion is that this prescription is an unnatural conditioning
and that it is unstable to runaways with the slightest perturbation of
the initial conditions, but we have not been able to say this decisively.
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Examples

Conclusion

We can compute stuff in quantum cosmology!

Things to work on:

Understand the bulk better.

Understand the irrelevant operators.

How is this connected to string theory?

How is this framework affected by eternal inflation? ¡- crucial for
understanding phenomenology!

How can we think about the static patch - in particular how is this
related to dS/dS and/or conformal quantum mechanics?
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