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Things I believed at the beginning of the Bits and Branes
program:

1. I understand, more-or-less, what black hole complementarity
(BHC) means.

2. BHC resolves all paradoxes in black hole decay.

3. AdS/CFT duality implements BHC.

Goal during program: make these more precise.



What I learned:



What I learned:

1. I am confused.



Outline

I. Cats behind horizons

II. Confusions about complementarity



Where was Hawking’s ‘mistake’?

For quantum gravity in AdS spacetime, AdS/CFT duality implies that
the process of black hole formation and decay is unitary, and that the
information is emitted with the Hawking radiation. But where does
the argument for information loss break down?

This diagram doesn’t seem to commute!



I. Cats behind horizons

If Schrodinger’s cat were behind the horizon of an AdS black hole,
could we determine its state by a measurement in the dual CFT?

Yes: Banks, Douglas, Horowitz, Martinec, Balasubramanian, Ross,
Susskind, Toumbas, Maldacena, Hubeny, Kraus, Ooguri, Shenker, Kleban,
Freivogel, Hamilton, Kabat, Lifschytz, Lowe, Marolf, Lawrence, Silverstein,
Heemskerk, Polchinski

One strategy: construct field operators φ(y) for points behind the
horizon in terms of operators in the CFT.



Bulk operators

First, review construction for scalar fields in the bulk of AdS (Banks,
Douglas, Horowitz, Martinec; Balasubramanian, Kraus, Lawrence, Trivedi;
Bena; Hamilton, Kabat, Lifschytz, Lowe)

Consider any bulk Green’s function

(�′ − m2)G(y|y′) = 1√
−g

δd+1(y− y′)

Then at leading order in 1/N (free bulk fields),

φ(y) =
∫

dd+1y′
√
−g′φ(y′)(�′ − m2)G(y|y′)

= surface term

=

∫
ddx′ K(y|x′)O(x′) .



φ(y) =
∫

ddx′ K(y|x′)O(x′) + . . .

Extends order-by-order in 1/N.

Form of smearing function K depends on the choice of Greens
function (it’s convenient to choose one that is nonvanishing only in
spacelike directions) but result is equivalent.

Extends to other fields (in gauge-fixed form).

This is an operator relation, so it extends to nontrivial backgrounds, as
long as they are close to AdS.



φ(y) =
∫

ddx′ K(y|x′)O(x′) + . . .

This represents the bulk operator in terms of a superposition of local
CFT operators at different times. By using the CFT evolution,

O(τ,~x) = e−iH(τ−τ0)O(τ0,~x)eiH(τ−τ0).

we can express it in terms of operators at a single time. These
‘precursor’ operators are necessarily nonlocal, and gauge invariant, so
it is conventional to call them Wilson loops. However, this may not be
the best description: the paths are extremely irregular.

We can also give a path integral construction,
inserting a ‘fold’ into the space:

This is dual to a folded bulk.
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A nice feature is that the mapping between CFT operators at time τ0
and operators in the bulk region spacelike with respect to τ0 is
independent of the Hamiltonian at other times.

!0

Two arguments: (1) Backward/forwards evolution (2) The bulk and
boundary operator lie on the same Cauchy surface, so the relation
between them is determined purely by the bulk constraints (cf. path
integral).



Behind the horizon

This immediately tells us that we can make measurements behind
horizons. E.g. the thought experiment of Hubeny:

• !

!"

!m

We can measure the bulk field at CFT time τm exactly as before and
then throw in a shell such that field is behind a horizon.



More generally, for a black hole formed in collapse we can evolve the
field equations backwards to a time before the collapse, and then use
the AdS construction. For an eternal black hole, bulk operators behind
the horizon would involve operators in both CFT’s.

Conclusion: yes, we can measure the state of the cat behind the
horizon.

Lesson: the Hilbert space of an observer behind the horizon can be
embedded in the full CFT Hilbert space. But after the black hole
evaporates, this is just the CFT of the outgoing Hawking radiation:
this is black hole complementarity.



A weakness in this construction: it requires that we are able to solve
both the bulk and boundary dynamics. Can we do better?

Hamilton, Kabat, Lifshitz, Lowe suggest that spacelike commutativity
of φ(y) and φ(y′) (appropriately modified to take account of the
gravitational constraints), together with the AdS/CFT boundary
dictionary, is enough to determine the fields.

But this depends implicitly on knowing the dynamics — if we use the
wrong dynamics, we can construct commuting fields that have
nothing to do with the physics (Susskind).



II. Confusions about complementarity

Review original idea (figure from Susskind and Thorlacius).
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FIGURE 7.

A gedanken experiment in which an observer O measures information in Hawking

radiation before falling into the black hole. A spin a has previously crossed the

horizon and is measured by apparatus A. A message is sent from A to O before

O hits the singularity.

An observer O who has been hovering outside the hole makes measurements on the

Hawking radiation. Assuming that all infalling information is eventually radiated, a mea-

surement can be performed on the radiation which is equivalent to a determination of any

component of the original spin. Meanwhile the infalling spin a has been measured by the

apparatus A which accompanied it. From the point of view of an external observer the

“spin in the Hawking radiation” h must be correlated with the member b of the original

pair which remained outside the black hole. If the spin b is measured along any axis, then

the Hawking spin h must be found anti-aligned if it too is measured along the same axis.

On the other hand the original spin a which fell through the horizon was also correlated to

the other member of the pair b. It would seem that the two separate spins (a and h) are

correlated with a third (b) so as to be anti-aligned with it. This violates the principles of

15

Throw a bit a into a black hole. If info is conserved, this same bit is
encoded in the Hawking radiation. No observer can see both copies
(no-cloning). This is consistent if the bit takes at least a time rS ln rS
to thermalize.
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The two copies of the bit lie on a single spacelike hypersurface. The
full low energy Hilbert space on this surface would have two copies of
the bit — this is not consistent with QM. One should talk only about
the smaller Hilbert spaces available to individual observers.



This seems to be morally consistent with AdS/CFT: the starting point
is nonlocal, and does not approximate quantum field theory in curve
spacetime. The Hilbert space of the observer behind the horizon is
embedded in the CFT Hilbert space, which we identify with the
Hilbert space of the external observer.



Bit models
One can also frame the black hole information paradox in terms of the
naturally produced Hawking pairs. The bit models of Mathur; Czech,
Larjo, Rozali; Giddings; Avery abstract the black hole down to these
pairs.

|0̂0̂1̂0̂0̂1̂0̂0̂0̂0̂1̂1̂1̂1̂1̂1̂0̂1̂1̂0̂1̂0̂1̂0̂100010001000010110100011〉

Theorem of Mathur: in this context, if the information is emitted in
the Hawking radiation then one must have an O(1) modification of
the quantum mechanics of the modes near the horizon: not just the
Hawking state |0̂, 0〉+ |1̂, 1〉 but also |0̂, 1〉, |1̂, 0〉, and |0̂, 0〉 − |1̂, 1〉
are produced. (Mathur: the horizon cannot be information-free)

Such a large modification of the local physics is surprising. The bit
models are based on a ‘large’ Hilbert space, which BHC excludes.
Can we develop an alternative picture based on Hilbert spaces of
individual observers?



The problem (Mathur, ...)

Once the black hole has lived O(1/2) of its mass, all successive
Hawking photons must be maximally entangled with the the first half
of the Hawking radiation (Page).

But in the Hawking process, each photon is strongly entangled with
its partner.

This is inconsistent with strong subadditivity of entropy, and
tantamount to cloning.



Strong subadditivity

SAB + SBC ≥ SABC + SB

Apply this with A = first half of Hawking radiation, B = later
Hawking photon, C = partner of B behind horizon. BC is in a pure
state (in the Hawking process), so SBC = 0 and SABC = SA. SB > 0
because B is entangled with C. So SAB > SA, but we need SAB < SA to
get the information out.

In order for BHC to save us, we would need that no observer could see
all of A,B,C. But this requires only that they see the first half of the
Hawking radiation and the pair at the horizon. This seems easy for an
infalling observer (cf. Susskind and Thorlacius), but may be an out.

Thinking about this seems to lead to a bigger problem...



A bigger problem

Once the black hole has radiated O(1/2) of its mass, its internal state
is fully entangled with the Hawking radiation: we can make a
measurement on the early radiation that will tell us whether a given
Hawking state will be populated (Page; Hayden & Preskill).

But a state with a definite number of outgoing Hawking quanta must
have high energy quanta near the horizon. The outgoing mode
operators are related to those near the horizon by

bω =

∫ ∞
0

dω′
(
α∗ωω′aω′ − β∗ωω′a†ω′

)
,

so if e.g. bω|ψ〉 = 0 then there must be a† excitations that can be seen
by an infalling observer.



Burning up at the horizon

Further conjecture: It isn’t necessary to actually make the
measurement on the early Hawking radiation, the fact that we could
do so is enough: the radiation has already decohered the states of the
later Hawking photons. The conclusion seems to be that if the
Hawking radiation is pure, infalling observers burn up. (Other
arguments due to Marolf.)

The usual argument against this is that there is nothing special about
the horizon locally, only globally. But we expect locality to break
down, maybe this is the manifestation.

I don’t really believe this, but at this point I see several alternatives all
unsatisfactory...



Conclusions:

I. We can make quantum measurements behind horizons using
operators in the CFT, but, with the current state of knowledge, this
requires a complete understanding of the bulk and boundary dynamics
separately.

IIA. It is not obvious how BHC avoids O(1) modifications of the
quantum dynamics near the horizon as found in the bit models.
Perhaps an infalling observer cannot actually make the necessary
measurements?

IIB. How do we keep the infalling observer from burning up? Or is
this the actual situation?


