NON-PERTURBATIVE Effects in Higher Spin THEORIES

Alejandra Castro
McGill University

R. Gopakumar, M. Gutperle, J. Raeymaekers, AC arXiv II II.338I E. Hijano, A. Lepage-Jutier, A. Maloney, AC arXiv III0.4II7

Precision Holography

AdS

CFT

Gauge symmetries

Vasiliev’s Theory Massless higher spin fields

Global
symmetries

Solvable theory: Free,
Minimal models

$$
Z_{\mathrm{CFT}}(\beta)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right)
$$

$$
Z_{\mathrm{CFT}}(\beta)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right)
$$

$$
\begin{aligned}
& =Z_{\mathrm{HS}}(\beta) \\
& =\int_{\partial \mathcal{M}}[\mathcal{D} g \cdots] e^{-S_{\mathrm{E}}}
\end{aligned}
$$

$$
\begin{aligned}
Z_{\mathrm{CFT}}(\beta) & =\operatorname{Tr}_{\mathcal{H}}\left(e^{-\beta H}\right) \\
& =Z_{\mathrm{HS}}(\beta) \\
& =\int_{\partial \mathcal{M}}[\mathcal{D} g \cdots] e^{-S_{\mathrm{E}}}
\end{aligned}
$$

Can we re-write the partition function as a sum over geometries?

Does a higher spin theory resemble at all Einstein gravity?

What do we expect (assume) a gravitational path integral looks like?
\uparrow Include changes in topology

- Admit a saddle point approximation

$$
\begin{gathered}
Z_{\mathrm{HS}}=\sum_{\phi_{c l}} \exp \left(-\frac{1}{\hbar} S_{E}^{(0)}+S_{E}^{(1)}+\hbar S_{E}^{(2)}+\cdots\right) \\
\downarrow \\
\begin{array}{c}
\text { Non-perturbative } \\
\text { (e.g. black holes) }
\end{array} \\
\downarrow
\end{gathered}
$$

OVERVIEW

AdS_{3}

Classical
phase space
CFT_{2}

Spectrum states

OVERVIEW

AdS3

Classical phase space

CFT_{2}

Spectrum states

What did we learn?

CHERN-SIMONS AND HIGHER SPIN

why is it easy to construct hs thys in 3d?
Equs are bacground independent

$$
\begin{aligned}
& F=d A+A^{2}=0 \\
& \bar{F}=d \bar{A}+\bar{A}^{2}=0
\end{aligned}
$$

$$
A, \bar{A} \in S L(N, \mathbb{R})
$$

$$
\begin{aligned}
& A=\omega+\frac{1}{\ell} e \\
& \bar{A}=\omega-\frac{1}{\ell} e
\end{aligned}
$$

Linearized eom's describe spin-s fields

$$
\begin{aligned}
& s=2,3, \ldots, N \\
& g_{\mu \nu} \sim \operatorname{Tr}\left(e_{\mu} e_{\nu}\right) \\
& \psi_{\mu \nu \rho} \sim \operatorname{Tr}\left(e_{\mu} e_{\nu} e_{\rho}\right)
\end{aligned}
$$

Chern-Simons and Higher Spin

why is it easy to construct hs thys in 3d?
Equs are bacground independent

$$
\begin{aligned}
& F=d A+A^{2}=0 \\
& \bar{F}=d \bar{A}+\bar{A}^{2}=0
\end{aligned}
$$

$$
A, \bar{A} \in S L(N, \mathbb{R})
$$

$$
\begin{aligned}
& A=\omega+\frac{1}{\ell} e \\
& \bar{A}=\omega-\frac{1}{\ell} e
\end{aligned}
$$

Linearized eom's describe spin-s fields

$$
s=2,3, \ldots, N
$$

Not gauge invariant!

A generalization to include infinite number of fields

$$
\begin{gathered}
S L(N) \rightarrow h s[\lambda] \\
s=2,3, \cdots, \infty \\
\lambda \in \mathbb{R}
\end{gathered}
$$

Can also add propagating d.o.f. : massive scalar field

$$
m^{2}=-1+\lambda^{2}
$$

ADS3/CFT2

AdS_{3}

Vasiliev's theory

$$
h s[\lambda]
$$

\& one scalar

$$
m^{2}=-1+\lambda^{2}
$$

CFT_{2}

W_{N} minimal model

$$
\begin{gathered}
c \leq N-1 \\
\frac{S U(N)_{k} \otimes S U(N)_{1}}{S U(N)_{k+1}} \\
N, k \rightarrow \infty \\
\lambda=\frac{N}{k+N} \leq 1
\end{gathered}
$$

EVIDENCE... SO FAR...

Asymptotic symmetries

Henneaux, Rey I008.4579
Campoleoni, Fredenhagen, Pfenninger, Theisen 1008.744
Gaberdiel, Hartman IIOI. 2910
Campoleoni, Fredenhagen, Pfenninger II 07.0290

HS black holes

Correlation functions

Chang, Yin I I 06.2580 , I I I 2.5459
Papadodimas, Raju II08.3077
Ammon, Kraus, Perlmutter I I I I. 3926

Gutperle, Kraus II 03.4304
Kraus, Perlmutter II 08.2567
Gaberdiel, Hartman, Jin I203.00 I5

Perturbative spectrum

Gaberdiel, Gopakumar, Hartman, Raju IIOI.29IO
Gaberdiel, Gopakumar, Saha I009.6087

Boundary Spectrum

Easy to compute in the CFT dimensions of primaries

$$
\begin{gathered}
h\left(\Lambda_{+}, \Lambda_{-}\right) \\
h(f ; 0) \underset{N, k \rightarrow \infty}{\rightarrow} \frac{1}{2}(1+\lambda) \quad h(0 ; f) \underset{N, k \rightarrow \infty}{\rightarrow} \frac{1}{2}(1-\lambda) \\
h(\Lambda, \Lambda) \underset{N, k \rightarrow \infty}{\rightarrow} \frac{\lambda^{2}}{N}
\end{gathered}
$$

What is the bulk interpretation?

3D Higher Spin Gravity

Note: Gravity \neq Chern-Simons

3D Higher Spin Gravity

Note: Gravity \neq Chern-Simons

Gravitational theory requires:

- Picking embedding of SL(2) in SL(N)
\uparrow Imposing boundary conditions
\uparrow Allowing the topology to vary

3D Higher Spin Gravity

Note: Gravity \neq Chern-Simons

Gravitational theory requires:

\uparrow Picking embedding of SL(2) in SL(N)

- Imposing boundary conditions

Asymptotic AdS
Exclude A=0

- Allowing the topology to vary

Black holes are welcomed

OBSERVABLE

Goal:To construct smooth solutions
What does that mean?

OBSERVABLE

Goal:To construct smooth solutions
What does that mean?

$$
\operatorname{Hol}_{\gamma}(A)=\mathcal{P} \exp \left(\oint_{\gamma} A\right)
$$

Observable

Goal:To construct smooth solutions
What does that mean?

$$
\operatorname{Hol}_{\gamma}(A)=\mathcal{P} \exp \left(\oint_{\gamma} A\right)
$$

Perfect features:
\uparrow Independent of metric

- Topological invariant
- Traces are gauge invariant!

$$
\operatorname{Hol}_{\gamma}(A)=\mathcal{P} \exp \left(\oint_{\gamma} A\right)
$$

Rule: If holonomy is trivial around contractible cycle \Rightarrow solution is smooth

$$
\operatorname{Hol}_{\gamma}(A)=\mathcal{P} \exp \left(\oint_{\gamma} A\right)
$$

Rule: If holonomy is trivial around contractible cycle \Rightarrow solution is smooth

Note: Easy to implement for $\operatorname{SL}(\mathrm{N})$; hard to compute for hs $[\lambda]$
In the following, study $\operatorname{SL}(\mathrm{N}) \mathrm{HS}$ gravity which corresponds to

$$
\operatorname{Hol}_{\gamma}(A)=\mathcal{P} \exp \left(\oint_{\gamma} A\right)
$$

Rule: If holonomy is trivial around contractible cycle \Rightarrow solution is smooth

Note: Easy to implement for $\operatorname{SL}(\mathrm{N})$; hard to compute for hs $[\lambda]$
In the following, study $\operatorname{SL}(\mathrm{N}) \mathrm{HS}$ gravity which corresponds to

$$
\begin{gathered}
c \rightarrow \infty \\
N \text { fixed }
\end{gathered}
$$

BULK SPECTRUM

Consider the topology of a solid torus
thermal AdS

BTZ BH

BuLk Spectrum

Consider the topology of a solid torus
thermal AdS

$$
\gamma_{\mathrm{AdS}}: \phi \rightarrow \phi+2 \pi
$$

$$
\operatorname{Hol}_{\gamma}(A)=1
$$

$\gamma_{\mathrm{BTZ}}: t_{E} \rightarrow t_{E}+2 \pi \beta$

BuLk Spectrum

Consider the topology of a solid torus
thermal AdS

$$
\gamma_{\mathrm{AdS}}: \phi \rightarrow \phi+2 \pi
$$

Are there more smooth solutions? (with the same boundary conditions)

$$
\begin{aligned}
& \operatorname{Hol}_{\phi}\left(A_{\mathrm{AdS}}\right) \sim \exp \left(2 \pi i \lambda_{\mathrm{AdS}}\right) \\
& \lambda_{\mathrm{AdS}}=\left(-\frac{N-1}{2}, \cdots, \frac{N-1}{2}\right)
\end{aligned}
$$

Are there more smooth solutions? (with the same boundary conditions)

$$
\begin{aligned}
& \operatorname{Hol}_{\phi}\left(A_{\mathrm{AdS}}\right) \sim \exp \left(2 \pi i \lambda_{\mathrm{AdS}}\right) \\
& \lambda_{\mathrm{AdS}}=\left(-\frac{N-1}{2}, \cdots, \frac{N-1}{2}\right)
\end{aligned}
$$

$$
\operatorname{Hol}_{\phi}\left(A_{\text {new }}\right) \sim \exp \left(2 \pi i \lambda_{\mathrm{n}}\right)
$$

$$
\begin{gathered}
\lambda_{\mathrm{n}}=\left(\lambda_{1}, \cdots, \lambda_{N}\right) \\
\lambda_{i}=m_{i}-\frac{m}{N} \quad m_{i} \in \mathbb{Z} \\
m=\sum_{i} m_{i}
\end{gathered}
$$

Are there more smooth solutions? (with the same boundary conditions)

$$
\begin{gathered}
\operatorname{Hol}_{\phi}\left(A_{\mathrm{AdS}}\right) \sim \exp \left(2 \pi i \lambda_{\mathrm{AdS}}\right) \\
\lambda_{\mathrm{AdS}}=\left(-\frac{N-1}{2}, \cdots, \frac{N-1}{2}\right)
\end{gathered}
$$

$$
\operatorname{Hol}_{\phi}\left(A_{\text {new }}\right) \sim \exp \left(2 \pi i \lambda_{\mathrm{n}}\right)
$$

$$
\begin{gathered}
\lambda_{\mathrm{n}}=\left(\lambda_{1}, \cdots, \lambda_{N}\right) \\
\lambda_{i}=m_{i}-\frac{m}{N} \quad m_{i} \in \mathbb{Z} \\
m=\sum_{i} m_{i}
\end{gathered}
$$

X : States with degenerate eigenvalues
: States with non-degenerate eigenvalues

Don't forget to impose boundary conditions

$$
\left(A-A_{\mathrm{AdS}}\right)_{\mid \rho \rightarrow \infty}=\mathcal{O}(1)
$$

The fall off of the connection restricts eigenvalues to be non-degenerate. States \times we throw. States \times we keep.

Conical Defects

INTERPRETATION

Where does \times fit in the CFT spectrum?
Compare with $h(\Lambda, \Lambda)$

INTERPRETATION

AdS

$$
\begin{array}{cl}
w_{0}^{(2)} & =-\beta_{0} C_{2}\left(\lambda_{\mathrm{n}}\right) \\
w_{0}^{(3)} & =i \beta_{0}^{3 / 2} C_{3}\left(\lambda_{\mathrm{n}}\right) \\
\quad \vdots &
\end{array}
$$

$$
\begin{aligned}
w_{0}^{(2)} & =\alpha_{0}^{2} C_{2}(\Lambda) \\
w_{0}^{(3)} & =\alpha_{0}^{3} C_{3}(\Lambda) \\
\vdots &
\end{aligned}
$$

$$
\beta_{0}=\frac{c}{N\left(N^{2}-1\right)}
$$

$$
\begin{aligned}
& \alpha_{0}^{2}=\frac{1}{N(N+1)}-\frac{c}{N\left(N^{2}-1\right)} \\
& \rightarrow-\beta_{0} \\
& c \rightarrow \infty
\end{aligned}
$$

INTERPRETATION

AdS

$w_{0}^{(2)}=-\beta_{0} C_{2}\left(\lambda_{\mathrm{n}}\right)$
$w_{0}^{(3)}=i \beta_{0}^{3 / 2} C_{3}\left(\lambda_{\mathrm{n}}\right)$
$\beta_{0}=\frac{c}{N\left(N^{2}-1\right)}$

Reliable for large central charge and fixed N

$$
\begin{gathered}
\text { CFT } \\
w_{0}^{(2)}=\alpha_{0}^{2} C_{2}(\Lambda) \\
w_{0}^{(3)}=\alpha_{0}^{3} C_{3}(\Lambda) \\
\vdots \\
\alpha_{0}^{2} \underset{\substack{\rightarrow \infty \\
c \rightarrow \infty}}{=} \frac{1}{N(N+1)}-\frac{c}{N\left(N_{0}-1\right)}
\end{gathered}
$$

Unitary for central charge less than N
$\mathrm{SL}(\mathrm{N})$ states map via analytic continuation to light states of W_{N} minimal model

What happens in this limit to the other primaries?

$$
h(f ; 0) \underset{c \rightarrow \infty}{\rightarrow}-\frac{1}{2}(N-1) \quad h(0 ; f) \underset{c \rightarrow \infty}{\rightarrow}-\frac{c}{2 N^{2}}
$$

What happens in this limit to the other primaries?

$$
h(f ; 0) \underset{c \rightarrow \infty}{\rightarrow}-\frac{1}{2}(N-1) \quad h(0 ; f) \underset{c \rightarrow \infty}{\rightarrow}-\frac{c}{2 N^{2}}
$$

Compare to

$$
h(f ; 0) \underset{N, k \rightarrow \infty}{\longrightarrow} \frac{1}{2}(1+\lambda) \quad h(0 ; f) \underset{N, k \rightarrow \infty}{\longrightarrow} \frac{1}{2}(1-\lambda)
$$

What happens in this limit to the other primaries?

$$
h(f ; 0) \underset{c \rightarrow \infty}{\rightarrow}-\frac{1}{2}(N-1) \quad h(0 ; f) \underset{c \rightarrow \infty}{\rightarrow}-\frac{c}{2 N^{2}}
$$

Compare to

$$
h(f ; 0) \underset{N, k \rightarrow \infty}{\rightarrow} \frac{1}{2}(1+\lambda) \quad h(0 ; f) \underset{N, k \rightarrow \infty}{\rightarrow} \frac{1}{2}(1-\lambda)
$$

Bulk interpretation

$$
h(f ; f)=h(f ; 0)+h(0 ; f)-\frac{N-1}{N}
$$

Conical defect +
Conical Scalar

Is the black hole still the king (or queen)?

Is the black hole still the king (or queen)?

Black dominates at high temperature, but what are we counting?

$$
S_{\mathrm{BH}}=S_{\text {Cardy }}
$$

"Typical" gravity behavior: Hawking-Page transition

CONCLUSIONS

RG flow equations in AdS/CFT

Are black holes truly big in HS thy?

What is Cardy's formula counting?

Did we learn anything new?

