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In which sense is gravity “holographic”
away from AdS/CFT?

Strategy Study vacuum Einstein gravity in a regime where
holography can be expected.

Objective Show that a universal subset of the dynamics of
vacuum Einstein gravity describes a fluid in one lower
dimension with special properties. Interpret holographically.

[N.B. Inspired from AdS/CFT but logically independent. Results are
not obtained from a flat limit of AdS/CFT.]
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Plan of the talk

— Relativistic fluid =
equations from
vacuum Einstein
gravity
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Domain : Rindler wedge with cutoff

Consider a Rindler wedge in flat
spacetime

Isolate the dynamics using a
Dirichlet boundary condition

gab‘Zc = Nab

and impose regularity at the Rindler
horizon H*.

What is the remaining dynamics ?
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Domain : Rindler wedge with cutoff

Consider a Rindler wedge in flat
spacetime

Isolate the dynamics using a
Dirichlet boundary condition

gab‘Ec = Nab

and impose regularity at the Rindler
horizon H*.
What is the remaining dynamics ?

Express it in terms of the
stress-tensor on X, !

1
Tap = —Kap + ganK, Kap = §£Ngab :
5/30



Structure of Einstein’s equations

Decomposition :
@ d + 1 coordinates intrinsic to the brane : x? = (7,x1,...Xxq)

@ 1 coordinate extrinsic to the brane : r.
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Structure of Einstein’s equations

Decomposition :
@ d + 1 coordinates intrinsic to the brane : x? = (7,x1,...Xxq)

@ 1 coordinate extrinsic to the brane : r.

Resulting Gauss-Codazzi equations :
@ R™ =0 on X, is a constraint

dTpT® — (T2 =0.
@ R™ =0 on Y. are conservation equations
9aT = 0.
@ R — 0 everywhere lead to radial integration,

77(1b|2cv Tab|2c = gl»tl’(r7xa)‘
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Reformulation of Einstein’s equations

Define a conserved stress-tensor T, obeying the equation of
state

dTpT? (TG = 0,

integrate in the bulk and impose regularity everywhere.
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Reformulation of Einstein’s equations

Define a conserved stress-tensor T, obeying the equation of
state

dTpT? (TG = 0,

integrate in the bulk and impose regularity everywhere.

@ Existence and unicity of a solution is not clear.

@ General solution out of reach. Look close at equilibrium
and near-equilibrium.

e



Strategy : solve in the Hydrodynamics regime

We have a dissipative system that relaxes
to thermal equilibrium

@ We will first look at global equilibrium.
This is the thermodynamic regime.

@ We will then look then at local
equilibrium with long wavelength, low
energy perturbations.
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Global equilibrium : Rindler spacetime

The metric of Rindler spacetime is
ds? = 2drdr — rdr? + dxidx .

Evaluation reveals the perfect fluid form

1
Tap = Ouqup + \/_r—chab7
where hgp, = ngp + Ugup and ug = 03.

Note that the constraint d T, T — (T¢)?2 = 0
implies either

2d
peq =0 Or peq = “d_1Pea

The second solution is the singular Taub
spacetime [Eling, Meyer, Oz, 2012]
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Global equilibrium : Rindler spacetime

@ Generate (p,u,) by acting with diffeos.
@ No energy density

Peq = 0.
@ Gibbs-Duhem relation

o7 =5 (i)

where
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Local equilibrium configurations
Start with the seed
ds = equilibrium solution (p,u,)

where we promote p = p(x) and ug = ug(x).

Conservation of the stress-energy tensor
0 = 0Ty = 0 (P(X)hap (X))
is equivalent to the ideal relativistic fluid equations

8aua == 07
uPopu, = —hPo,Inp < a,=Du,=-D}Inp.
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Local equilibrium configurations

@ We solve for small gradients using the relativistic scaling

Oq ~ €, ar~e°, uaweo, pNeO.

@ We solve iteratively Einstein’s equations
g, gnh - gl

by solving
0 =R() ~ o2qf) + RIg"“")

Gauge freedom ? Integration constants ? Field
redefinitions ?
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Existence and Unicity
We fix
@ Radial gauge (ingoing null coordinates)

grr =0, dra = PUq -

@ Regularity at the horizon H " (or equivalently analyticity).
It fixes a traceless d x d tensor of integration constants to
Zero.

@ Gauge conditions on the stress-tensor

(i) Tpu®h? =0
(if) Tcdhghg = p hyp + non-isotropic tensors

The condition (ii) replaces the gauge T ,u%u? = p.
= Resulting solution is unique and regular at each

perturbative order. This extends [Bredberg, Keeler, Lysov,
Strominger, 2011].
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How to express the solution ?
In terms of the bulk metric

ds? = puadrdx?® + gap(r,x)dx%dx? .

In terms of boundary data on % :
@ Metric

Jablse = Nab -

@ Stress-energy tensor
Tab = pUaUp + Phgp + T4, T u® = 0.
We need to find a basis of fluid scalars/tensors
Note that p is completely determined by IT; through
d Ty T = (TS)2.
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Results at first order

@ Stress-energy tensor
_ 1 1 ,,a _
Tab - Puaub + phab + Hab’ Habu - O
The first order corrections are

p = ('Dlnp+0(5?)
L = —2nKa + O(8?)

The fluid dual to vacuum Einstein gravity admits

¢ _ n_1 1
s=% 5T *=aG

[Chirco,Eling,Liberati] No higher order corrections.

G.C. (U. Amsterdam) 15/ 30



Results at second order

@ Stress-energy tensor

Tap = pUqlp + Phgp + I3,

H(J{bua - O.

=] = - = DA
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Results at second order
@ Stress-energy tensor

Tap = puqup + phap + H(Jz_b) Habu =0.
The first and second order corrections are

p = C’Dlnp-}- <d1’C bICa +dQ, an +d3(Dlnp)
+d4DDInp +ds(D, Inp) )
1
H(Jl_b = _277’Cab + I_) <CIIC2K:cb + CZK?QQ|C|b) + CgﬂaCch

+c4hSh80:041np + c5Kqp DInp + cgDx In pDf In p) .
The fluid dual to vacuum Einstein gravity admits

¢('=0, dy=-2, dy=d3=dys=ds5=0,
n=1, C1=-2, Chp=C3=C4=C5=—Cg=—-4.
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Near-horizon limit

What happens in the near-horizon limit
re -1, — 0 ?
We observe that the following near-horizon limit :

2
NHy: ' —fixed, 2 =fixed

I'c I'c

can be written as

NHy = Weyl rescaling + Relativistic scaling

= The ideal relativistic fluid appears in the near-horizon
limit.
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Incompressible Navier-Stokes equations

The non-relativistic scaling defined by
O — €y, 0. — €20, Vi—evy, pP—pP+eP
preserves the incompressible Navier-Stokes equations
8, Vi + Vi — n0*v; + 9P ~ €3, OVl ~ €.
Corrections to incompressibility scale as O(¢*).

Corrections to Navier-Stokes scale as O(e?).

The non-relativistic scaling of any relativistic fluid gives the
incompressible Navier-Stokes equation in the limit ¢ — 0.
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Near-horizon limit
Now, there are other near-horizon limits
re >m — 0 !
One can define the alternative near-horizon limit
Vi

NHp: R _fixed, L = fixed

ré T'c

It has been observed in [Bredberg et al., 2011] that the
near-horizon limit can be written as

NHg = Weyl rescaling + Non-relativistic scaling

= Navier-Stokes fluid and relativistic fluid both appear in
near-horizon limits.
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From relativistic expansion to non-relativistic
expansion

@

Ideal
Relativistic
Fluid

Incompressible
Navier-Stokes
Fluid

0O(g2)

O(g?) ~gb
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— Relativistic fluid =
equations from
vacuum Einstein
gravity
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Entropy current : Fluid analysis

Classify the non-negative currents

1
ja :Sequa+0(a), SQq: E
The condition 9,7¢ > 0 implies

T = sequ + (3 terms ~ 9%) + 9K + 0(83).

There is therefore a 3-parameter family of non-trivial entropy
currents.

Can we define from the bulk an entropy current in that class?
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Entropy current : Bulk analysis
We consider the horizon #H, defined by r = ry/(x). Let I* be its
affine generator

V,1Y =0,

The expansion of geodesics at the horizon is non-negative if
the area law is obeyed :

0= (V") >0
After some algebraic manipulations, one can show that
(Vul")y > 0 if and only if ,7¢ > 0

where

1
T = 2oV IR &= 0u(r—T(X)

The entropy current can be pulled-back from the horizon to X
using the preferred null geodesics x* = constant.
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Entropy current : Bulk analysis

Result : we obtain one particular current out of the
3-parameter family.

The divergence of the entropy current is indeed
non-negative.

The fluid description is consistent with the second law of
thermodynamics.

[} = = =
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Holographic interpretation

In AdS/CFT
Thermal state < AdS black brane
Relativistic < Relativistic gradient expansion
hydrodynamics solution
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Holographic interpretation

In AdS/CFT
Thermal state < AdS black brane
Relativistic < Relativistic gradient expansion
hydrodynamics solution

From general expectations of holography :

Rindler / dual QFT

Thermal state =« Rindler equilibrium solution
Relativistic < Relativistic gradient expansion
hydrodynamics solution
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Holographic interpretation

In AdS/CFT
Thermal state < AdS black brane
Relativistic < Relativistic gradient expansion
hydrodynamics solution

From general expectations of holography :

Rindler / dual QFT

Thermal state =« Rindler equilibrium solution
Relativistic < Relativistic gradient expansion
hydrodynamics solution

Clues on the QFT? Idea! Reproduce the equation of state of
the equilibrium stress-tensor.
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In AdS/CFT

What is the equation of state ?
@ Dirichlet boundary condition at infinity :

T2 = 0.

Dual implementation : super Yang-Mills theory.
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In AdS/CFT

What is the equation of state ?
@ Dirichlet boundary condition at infinity :
TS =0.
Dual implementation : super Yang-Mills theory.
@ Dirichlet boundary condition at cutoff radius

d?d+1
(T8)? —dT,T® = -0,
Dual implementation : non-local irrelevant multi-trace
deformation of the CFT. Non-local QFT. [Brattan, Camps,

Loganayagam, Rangamani, 2011]
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In AdS/CFT

What is the equation of state ?
@ Dirichlet boundary condition at infinity :
¢ =0.

Dual implementation : super Yang-Mills theory.
@ Dirichlet boundary condition at cutoff radius

d*d+1)

(Tg)Z - dTabTab = I2 .

Dual implementation : non-local irrelevant multi-trace
deformation of the CFT. Non-local QFT. [Brattan, Camps,
Loganayagam, Rangamani, 2011]

In Vacuum Einstein gravity

@ Dirichlet boundary condition at cutoff radius
(T4)? —dT,, T = 0.

Dual implementation ?
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Preliminary holographic model

The action

S = /ddx\/_—%/—aawaqs.
has a stress-tensor obeying
(TH? —dT,, T = 0.

Assuming S(¢, (0¢)?), there are only two solutions for such a
Lagrangian. One of which is the square-root action(*).

(*) The other action is a model for a fluid in Taub spacetime [Eling,
Meyer, Oz, 2012]
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Conclusion

@ Einstein’s equations around Rindler horizon is described
by a relativistic fluid with

peq = 0, Peq > 0,
and specific dissipative coefficients.

The fluid stress-tensor and the bulk solution are both
regular and uniquely defined.

@ Near-horizon limits give either the ideal relativistic fluid
or the incompressible Navier-Stokes fluid.

@ The fluid is consistent with the second law of
thermodynamics up to second order in gradients.

@ A Sqgrt action reproduces key characteristics of the fluid
equation of state.
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