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In which sense is gravity “holographic”
away from AdS/CFT?

Strategy Study vacuum Einstein gravity in a regime where
holography can be expected.

Objective Show that a universal subset of the dynamics of
vacuum Einstein gravity describes a fluid in one lower
dimension with special properties. Interpret holographically.

[N.B. Inspired from AdS/CFT but logically independent. Results are
not obtained from a flat limit of AdS/CFT.]
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Domain : Rindler wedge with cutoff
Consider a Rindler wedge in flat

spacetime

Isolate the dynamics using a
Dirichlet boundary condition

gab|Σc = ηab

and impose regularity at the Rindler
horizon H+.

What is the remaining dynamics ?
Express it in terms of the
stress-tensor on Σc !

Tab ≡ −Kab + gabK, Kab ≡
1
2LNgab .

G.C. (U. Amsterdam) 5 / 30



Domain : Rindler wedge with cutoff
Consider a Rindler wedge in flat

spacetime

Isolate the dynamics using a
Dirichlet boundary condition

gab|Σc = ηab

and impose regularity at the Rindler
horizon H+.

What is the remaining dynamics ?
Express it in terms of the
stress-tensor on Σc !

Tab ≡ −Kab + gabK, Kab ≡
1
2LNgab .

G.C. (U. Amsterdam) 5 / 30



Structure of Einstein’s equations
Decomposition :

d+ 1 coordinates intrinsic to the brane : xa ≡ (τ,x1, . . .xd)

1 coordinate extrinsic to the brane : r.

Resulting Gauss-Codazzi equations :
Rrr = 0 on Σc is a constraint

dTabTab − (Tcc)2 = 0 .

Rra = 0 on Σc are conservation equations

∂aTab = 0 .

Rab = 0 everywhere lead to radial integration,

ηab|Σc , Tab|Σc ⇒ gµν(r,xa) .
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Reformulation of Einstein’s equations

Define a conserved stress-tensor Tab obeying the equation of
state

dTabTab − (Tcc)2 = 0 ,

integrate in the bulk and impose regularity everywhere.
Existence and unicity of a solution is not clear.
General solution out of reach. Look close at equilibrium
and near-equilibrium.
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Strategy : solve in the Hydrodynamics regime

We have a dissipative system that relaxes
to thermal equilibrium

We will first look at global equilibrium.
This is the thermodynamic regime.
We will then look then at local
equilibrium with long wavelength, low
energy perturbations.
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Global equilibrium : Rindler spacetime
The metric of Rindler spacetime is

ds2 = 2dτdr − rdτ2 + dxidxi .

Evaluation reveals the perfect fluid form

Tab = 0uaub +
1√rc
hab,

where hab = ηab + uaub and ua = δτa.
Note that the constraint dTabTab − (Tcc)2 = 0
implies either

ρeq = 0 or ρeq = − 2d
d− 1peq .

The second solution is the singular Taub
spacetime [Eling, Meyer, Oz, 2012]
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Global equilibrium : Rindler spacetime

Generate (p,ua) by acting with diffeos.
No energy density

ρeq = 0 .

Gibbs-Duhem relation

s δT = δ
( p
16πG

)
where

s =
1
4G , T =

p
4π

G.C. (U. Amsterdam) 10 / 30



Local equilibrium configurations
Start with the seed

ds2(0) = equilibrium solution (p,ua)

where we promote p = p(x) and ua = ua(x).

Conservation of the stress-energy tensor

0 = ∂aTab = ∂a (p(x)hab(x))

is equivalent to the ideal relativistic fluid equations

∂aua = 0,
ub∂bua = −hba∂b lnp ⇔ aa ≡ Dua = −D⊥a lnp .
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Local equilibrium configurations

We solve for small gradients using the relativistic scaling

∂a ∼ ε, ∂r ∼ ε0, ua ∼ ε0, p ∼ ε0.

We solve iteratively Einstein’s equations

g(0)
µν , . . . ,g(n−1)

µν → g(n)
µν

by solving

0 = R(n)
µν ∼ ∂2r g(n)

µν + R̂(n)
µν [g(<n)]

Gauge freedom? Integration constants ? Field
redefinitions ?
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Existence and Unicity
We fix

Radial gauge (ingoing null coordinates)

grr = 0, gra = pua .

Regularity at the horizon H+ (or equivalently analyticity).
It fixes a traceless d× d tensor of integration constants to
zero.
Gauge conditions on the stress-tensor

(i) Tabuahbc = 0
(ii) Tcdhcahdb = phab + non-isotropic tensors

The condition (ii) replaces the gauge Tabuaub = ρ.
⇒ Resulting solution is unique and regular at each
perturbative order. This extends [Bredberg, Keeler, Lysov,
Strominger, 2011].
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How to express the solution?
In terms of the bulk metric

ds2 = puadr dxa + gab(r,x)dxadxb .

In terms of boundary data on Σc :
Metric

gab|Σc = ηab .

Stress-energy tensor

Tab = ρuaub + phab + Π⊥ab, Π⊥abua = 0.

We need to find a basis of fluid scalars/tensors

Note that ρ is completely determined by Π⊥ab through

dTabTab = (Tcc)2 .
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Results at first order

Stress-energy tensor

Tab = ρuaub + phab + Π⊥ab, Π⊥abua = 0.

The first order corrections are

ρ = ζ ′D lnp+O(∂2)

Π⊥ab = −2ηKab +O(∂2)

The fluid dual to vacuum Einstein gravity admits

ζ ′

s = 0, η

s =
1
4π , s ≡ 1

4G .

[Chirco,Eling,Liberati] No higher order corrections.
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Results at second order
Stress-energy tensor

Tab = ρuaub + phab + Π⊥ab, Π⊥abua = 0.
The first and second order corrections are

ρ = ζ ′D lnp+
1
p
(
d1KabKab + d2ΩabΩab + d3(D lnp)2

+d4DD lnp+ d5(D⊥ lnp)2
)

Π⊥ab = −2ηKab +
1
p
(
c1KcaKcb + c2Kc(aΩ|c|b) + c3Ω c

a Ωcb

+c4hcahdb∂c∂d lnp+ c5KabD lnp+ c6D⊥a lnpD⊥b lnp
)
.

The fluid dual to vacuum Einstein gravity admits
ζ ′ = 0, d1 = −2, d2 = d3 = d4 = d5 = 0,
η = 1, c1 = −2, c2 = c3 = c4 = c5 = −c6 = −4 .
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Near-horizon limit

What happens in the near-horizon limit

rc → rh → 0 ?

We observe that the following near-horizon limit :

NH¬ :
rh
rc

= fixed, v2
rc

= fixed

can be written as

NH¬ = Weyl rescaling+Relativistic scaling

⇒ The ideal relativistic fluid appears in the near-horizon
limit.
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Incompressible Navier-Stokes equations

The non-relativistic scaling defined by

∂i → ε∂i, ∂τ → ε2∂τ , vi → εvi, p→ p̄+ ε2P

preserves the incompressible Navier-Stokes equations

∂τvi + vj∂jvi − η∂2vi + ∂iP ∼ ε3, ∂ivi ∼ ε2.

Corrections to incompressibility scale as O(ε4).

Corrections to Navier-Stokes scale as O(ε5).

The non-relativistic scaling of any relativistic fluid gives the
incompressible Navier-Stokes equation in the limit ε→ 0.
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Near-horizon limit
Now, there are other near-horizon limits

rc → rh → 0 !

One can define the alternative near-horizon limit

NH­ :
rh
r2c

= fixed, vi
rc

= fixed

It has been observed in [Bredberg et al., 2011] that the
near-horizon limit can be written as

NH­ = Weyl rescaling+Non-relativistic scaling

⇒ Navier-Stokes fluid and relativistic fluid both appear in
near-horizon limits.
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From relativistic expansion to non-relativistic
expansion

Ideal  
Relativistic  

Fluid 

 

O(ε4) 

O(ε2) 

O(ε3) 

O(ε4) 

Incompressible 
Navier-Stokes 

Fluid 

 ~ε3 

~ε4 

~ε5 

~ε6 

~ε2 

Derive 

Guess 
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Entropy current : Fluid analysis

Classify the non-negative currents

J a = sequa +O(∂), seq =
1
4G .

The condition ∂aJ a ≥ 0 implies

J a = sequa + (3 terms ∼ ∂2) + ∂bK[ab] +O(∂3) .

There is therefore a 3-parameter family of non-trivial entropy
currents.
Can we define from the bulk an entropy current in that class ?
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Entropy current : Bulk analysis
We consider the horizon H+ defined by r = rH(x). Let lµ be its
affine generator

lµ∇µlν = 0 .

The expansion of geodesics at the horizon is non-negative if
the area law is obeyed :

θ ≡ (∇µlµ)H ≥ 0

After some algebraic manipulations, one can show that

(∇µlµ)H ≥ 0 if and only if ∂aJ a ≥ 0

where

J a =
1
4G
√
−gHξa, ξµ ≡ ∂µ(r − rH(x))

The entropy current can be pulled-back from the horizon to Σc
using the preferred null geodesics xµ = constant.
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Entropy current : Bulk analysis

Result : we obtain one particular current out of the
3-parameter family.

The divergence of the entropy current is indeed
non-negative.

The fluid description is consistent with the second law of
thermodynamics.
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Holographic interpretation

In AdS/CFT
Thermal state ⇔ AdS black brane
Relativistic ⇔ Relativistic gradient expansion
hydrodynamics solution

From general expectations of holography :

Rindler / dual QFT
Thermal state ⇔ Rindler equilibrium solution
Relativistic ⇔ Relativistic gradient expansion
hydrodynamics solution

Clues on the QFT? Idea ! Reproduce the equation of state of
the equilibrium stress-tensor.
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In AdS/CFT

What is the equation of state ?
Dirichlet boundary condition at infinity :

Taa = 0.
Dual implementation : super Yang-Mills theory.
Dirichlet boundary condition at cutoff radius

(Taa)2 − dTabTab = −d
2(d+ 1)

l2 .

Dual implementation : non-local irrelevant multi-trace
deformation of the CFT. Non-local QFT. [Brattan, Camps,
Loganayagam, Rangamani, 2011]

In Vacuum Einstein gravity

Dirichlet boundary condition at cutoff radius
(Taa)2 − dTabTab = 0.

Dual implementation ?
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Preliminary holographic model

The action

S =

∫
ddx
√
−γ
√
−∂aφ∂aφ .

has a stress-tensor obeying

(Taa)2 − dTabTab = 0.

Assuming S(φ, (∂φ)2), there are only two solutions for such a
Lagrangian. One of which is the square-root action(*).

(*) The other action is a model for a fluid in Taub spacetime [Eling,
Meyer, Oz, 2012]
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Conclusion

Einstein’s equations around Rindler horizon is described
by a relativistic fluid with

ρeq = 0, peq > 0 ,

and specific dissipative coefficients.

The fluid stress-tensor and the bulk solution are both
regular and uniquely defined.
Near-horizon limits give either the ideal relativistic fluid
or the incompressible Navier-Stokes fluid.
The fluid is consistent with the second law of
thermodynamics up to second order in gradients.
A Sqrt action reproduces key characteristics of the fluid
equation of state.
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