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Scrambling

* Minimum time for “localized” information to become
inaccessible without measuring fraction O(1) of the whole

system

* Normal systems: geometrical locality
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* Conjecture: this is correct, and no system can scramble its
degrees of freedom faster [Sekino-Susskind’08, Susskind’11]

— Motivation: black hole complementarity principle




Scrambling and quantum error correction

Time

BI

Reference

Sending arbitrary states from M to R
is equivalent to establishing
entanglement between N and R

Establishing entanglement between
N and R is equivalent to eliminating
all correlations between N and B’

Traongr = TN®Ew
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If U scrambles systems of size |B’[, then
the message M can be decoded from R.
(No-cloning requires |R| > |B’].)




Scrambling and quantum error correction
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Sending arbitrary states from M to ER
is equivalent to establishing
entanglement between N and ER

Establishing entanglement between
N and R is equivalent to eliminating
all correlations between N and B’

Treg ongrr = TN®@Ew
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Scrambling time controls information release.
Faster than log S leads to problems for
black hole complementarity.

If U scrambles systems of size |B’|, then
the message M can be decoded from ER.

(Ne-eloningrequiresHR{>+1B+)




Big picture versus toy examples

String theory descriptions of black holes couple degrees of freedom nonlocally.

e.g. BFSS Matrix theory: L = Z tr MOM® — z 1.J]_a[j1b,1;raj Mrb]2

ab/\)

Every pair of matrix entries appears together in at least one term

P\
Would like to show by direct analyye system that it is a fast scrambler

Goal of this hour is more modest:
1) Find examples of toy systems that scramble quickly
Want time independent, 2-body interactions, unengineered
Should scramble a whole subspace of initial states
2) Prove general lower bounds on scrambling times




Related work

* Asplund, Berenstein, Trancanelli
— Numerical simulation of BMN matrix model

(classical)
* Bar. |
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— Use AdS/CFT to study thermalization in

strongly coupled noncommutative
gauge theories




Outline

* Partl
— Scrambling and quantum error correction
— Definitions and calibration
— Brownian quantum circuits

* Part Il (Douglas Stanford)
— Ising interaction on random graphs
— Lieb-Robinson bounds for nonlocal interactions
— Comments on AdS/CF




Some formality

Scrambling n subsystems:
any n/3 should be independent of ¢

R

There should exist a single , such
that for all valid ¢

|trro(i) — trra(io)|1 < e

Schatten-l; norm measures 5

statistical distinguishability

In our toy models, we will simply compare
trro(y) to the unique maximum entropy
state on B’.




The computer scientist’s cop-out

How hard is it to determine if an efficiently specified U(t) scrambles a specific B’?

EXP
\l\oe\
A (e PSPACE Entropy of time-averaged quantum state
00 0O
QSZK QMA Gnd state energy of 2-body quantum spin systems
Graph isomorphism = SZK NP Gnd state energy of classical spin glass
BQP Scattering amplitudes in ¢* theory
P Gnd state energy of 1-d Ising model, arb couplings

Determining whether a noisy quantum evolution is correctable is QSZK-complete

[with Brian Swingle]



Brownian circuits

Time t o—9 Ol

n qubits

Dankert et al.: Construction of

circuit scrambllng in time O(log n)
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i.i.d. Gaussian N(O,g)
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Subsystem entropies

State W(t). Density operator for S subset of {1,2,...,n}: W(t) = try ;¢ Y(t).

Interested in purity hy(t) = tr Y(t)?

Pure state Smooth out fluctuations by
averaging over trajectories: <hg(t)>

Simplify by choosing product pure
input state 0)>= > > P>
Maximally p 9(0)> = [ b,>-..| U,

rr:lixed state Gives <hy(t)> = <h|g(t)> = <h,(t)>

Small miracle: system of linear ODE closes and is (almost) solvable

d(hx)
dt

= k}(?’l — k) 2<hk_1> — 5(’1,'{;) + 2<hk_|_1>



Analysis of ODE

[b(0)> = Y>> [b> Purity h,(t) = tr L|J|5|=k(t)2
di;“) — k(n— k) [2<h;€_1> —5(h) + 2<hk+1>} 1
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Brownian circuits: take-home

* Scramble very effectively: subsystems of size
smaller than half become almost maximally
mixed

» Scramble quickly: t*/t, = O(log n)
* But:
— Time-dependent

— Not very physical
— Lots of randomness



