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The black hole information paradox has been puzzling for a long time 

But now there are several definite computations that guide us through 
the possible paths towards a resolution ...

no microstates
 in gravity

microstates to be 
found in gravity

generic microstates
will be like vacuum 
at horizon

all microstates will need to have order 
unity corrections to low energy 
dynamics at horizon

generic states will
be soft to high energy 
impacts

generic states do not allow 
passage of any quanta; collective 
modes

Can address basic questions:

What is de Sitter entropy  counting ?

What happens to a collapsing shell ?

Is there a notion of ‘complementarity’ ? etc ...
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(A) The information paradox:  Leading order Hawking computation

From (??) we are given that

||ψ2||2 = �ψ2|ψ2� ≡ �21 < �2 (65)

|�ψ1|ψ2�| ≡ �2 < � (66)

S(p) = (�21 − �22) ln
e

(�21 − �22)
+O(�3) < � (67)

SN+1 > SN + ln 2− 2� (68)

ds
2 = − (1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r
2(dθ2 + sin2 θdφ2) (69)

r > 2M r < 2M t = constant r = constant (70)
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If we have a horizon, then
we do not have a 
time-independent slicing
of the geometry

Not like a ‘ball’ ...

t=const

r=const

horizonr=0
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r=0 horizon

correlated pairs

Older quanta move apart

initial matter

Hawking state

E = hν =
hc

λ
(38)

|�ψ�|H|ψ� − �ψ�|Hs.c.|ψ�| ≤ � (39)

lp � λ � Rs (40)

2� (41)

|ξ1� =
1√
2

�
|0�|0�+ |1�|1�

�
(42)

|ξ2� = √
2

�
|0�|0� − |1�|1�

�
(43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|ψ� → |ψ1�|ξ1�+ |ψ2�|ξ2� (46)

||ψ2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2− 2� (49)

S(A) = −Tr[ρA ln ρA] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN − � (52)

S(p) < � (53)

S(cN+1) > ln 2− � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ≥ S(A) + S(C) (56)

S({b}+ bN+1) > SN + ln 2− 2� (57)

S(A+B) ≥ |S(A)− S(B)| (58)

lp N
α
lp (59)

SN = S({b}) (60)

A = {b} B = p = {bN+1 + cN+1} (61)

A = {b} B = bN+1 C = cN+1 (62)

S({b}+ bN+1) + S(p) ≥ S({b}) + S(cN+1) (63)

3

(We will use a discretized 
picture for simplicity; for 
full state see e.g. Giddings-
Nelson)

Outside and inside of hole
get more and more entangled ....

Sent = N ln 2

10    light years
77

1

4



Possibilities:

very entangled state

very entangled statenothing
left

(a) Complete evaporation

(b) Remnant

Radiation is entangled, but there is nothing that it is entangled with
.... not a quantum state

Remnant needs to have unbounded degeneracy while having bounded 
mass and volume ... problematic

5



(B)   What do we need to do to resolve the paradox ?

In one sense very little, in another sense a lot !

People looked for deformations of the horizon ...

If we get such ‘hair’, then the horizon structure is altered, and the 
Hawking argument is invalidated

The problem is that people could not find the ‘hair’ ... this is
what makes the problem difficult
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(C) Many string theorists did not worry too much about the paradox, 
      assuming that ‘small corrections’ would make the entanglement go away

‘Nothing happens at horizon’ : 
Can only have a small correction at each 
step of pair creation

But number of pairs N is large

State may be non-entangled overall   ??

δSent

Sent
< 2� (SDM arXiv: 09091038) 

But we know now that this is not true ... if correction at each step is
          thenO(�)

(see also recent work of Giddings et al ...)

2
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Resolving the puzzle :

Avery, Balasubramanian, Bena, Chowdhury, de Boer, 
Denef, Gimon, Giusto, Keski-Vakkuri, Levi, Lunin, 
Maldacena, Maoz, Park, Peet, Potvin, Ross, Ruef, Saxena, 
Simon, Skenderis, Srivastava, Taylor, Turton, Warner ...

Work of many people has contributed to this picture ...

What do the microstates of black holes look like in string 
theory ?

That is, what is the nature of brane bound states when the
number of branes is large ?
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The traditional expectation ...

|n�total = (J−,total
−(2n−2))

n1n5(J−,total
−(2n−4))

n1n5 . . . (J−,total
−2 )n1n5 |1�total (5)

A

4G
= S = 2π

√
n1n2n3

∆E =
1

nR
+

1

nR
=

2

nR

∆E =
2

nR

S = ln(1) = 0 (6)

S = 2
√

2π
√

n1n2 (7)

S = 2π
√

n1n2n3 (8)

S = 2π
√

n1n2n3n4 (9)

n1 ∼ n5 ∼ n

∼ n
1
4 lp

∼ n
1
2 lp

∼ n lp

M9,1 → M4,1 ×K3× S1

A

4G
∼

�
n1n5 − J ∼ S

A

4G
∼
√

n1n5 ∼ S

e2π
√

2
√

n1np

1 +
Q1

r2

1 +
Qp

r2

e2π
√

2
√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (10)

B(2)
MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (11)

2

= 2π
√

n1n5(2

�
E

2mp
) (54)

S = 2π
√

n5(
√

n1 +
√

n̄1)(
√

np +
�

n̄p) (55)

= 2π
√

n5(
E

√
m1mp

) (56)

S = 2π
√

n1n5npnkk (57)

S = 2π
√

n1n5nkk(
√

np +
�

n̄p) (58)

= 2π
√

n1n5(
E

√
mpmkk

) (59)

S = 2π
√

n1n5(
√

np +
�

n̄p)(
√

nkk +
√

n̄kk) (60)

∼ lp (61)

∼ n
1
6 lp (62)

M9,1 →M4,1 × T 4 × S1 (63)

E/(2mkk) = 0.5 (64)

E/(2mkk) = 1.2 (65)

Lz ∼ [
g2α�4√n1n5np

V R
]
1
3 ∼ Rs (66)

∆S (67)

eS (68)

eS+∆S (69)

S = 2π
�

n1n5np(1− f) + 2π
�

n1n5npf(
√

nk +
√

n̄k) (70)

nk = n̄k =
1

2

∆E

mk
=

1

2Dmk
(71)

D ∼ [

√
n1n5npg2α�4

V Ry
]
1
3 ∼ RS (72)

∆S = S − 2π
√

n1n5np = 1 (73)

S =
A

4G
(74)

mk ∼
G5

G2
4

∼ D2

G5
(75)

D ∼ G
1
3
5 (n1n5np)

1
6 ∼ RS (76)

Nα lp (77)

5

weak 
coupling

strong
coupling

But it seems in string theory the opposite happens ...

|n�total = (J−,total
−(2n−2))

n1n5(J−,total
−(2n−4))

n1n5 . . . (J−,total
−2 )n1n5 |1�total (5)

A

4G
= S = 2π

√
n1n2n3

∆E =
1

nR
+

1

nR
=

2

nR

∆E =
2

nR

S = ln(1) = 0 (6)

S = 2
√

2π
√

n1n2 (7)

S = 2π
√

n1n2n3 (8)

S = 2π
√

n1n2n3n4 (9)

n1 ∼ n5 ∼ n

∼ n
1
4 lp

∼ n
1
2 lp

∼ n lp

M9,1 → M4,1 ×K3× S1

A

4G
∼

�
n1n5 − J ∼ S

A

4G
∼
√

n1n5 ∼ S

e2π
√

2
√

n1np

1 +
Q1

r2

1 +
Qp

r2

e2π
√

2
√

n1n5

w = e−i(t+y)−ikz w̃(r, θ, φ) (10)

B(2)
MN = e−i(t+y)−ikz B̃(2)

MN(r, θ, φ) , (11)

2

weak 
coupling

strong
coupling

(SDM 97)

R ∼ [
g2α�3√n1n5np

RV ]
1
3 ∼ Rs
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Compact directions pinch off

KK Monopoles and antimonoples

Fluxes etc. on cycles

General picture: Manifold ends in 
allowed sources of string theory,
Horizon does not form

So finally we do find 
the hair, but it is non-
perturbative ...

??
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In the beginning some string theorists found this picture strange,
because there was a general belief that ‘nothing should happen at the 
horizon’

Should we get ‘lab physics’
in a good slicing ?

Maybe quantum fluctuations at
planck scale do not affect low energy physics ?

Actually one cannot hide information at planck scale this way ... 

But more importantly, this is NOT what we want ...
11



horizonr=0

10 m

3 km

1√
2
(|0�|0�+ |1�|1�)

≈ |0�|0�

+�k
1√
2
(|0�|0� − |1�|1�)

1√
2
(|0�|0�+ |1�|1�)

+αk
1√
2
(|0�|0� − |1�|1�)

αk = O(1)

Small corrections will not 
help (Traditional horizon)

Need order
unity correction (hair)

Evolution at horizon in good slicing of of low energy modes cannot 
be close to the evolution in this room
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Fuzzballs give a realization of ‘hair’:  Energy eigenstates of 
the black hole do not have a traditional horizon.

That is, there is no region around a ‘horizon’ where we 
can make a good slicing and get laboratory evolution for 
low energy modes

We can now conjecture what happens to a collapsing shell ...

There is a small amplitude for the shell to tunnel into a fuzzball state ...

13



Amplitude to tunnel is very small

But the number of states that one can tunnel 
to is very large !

Smallness of amplitude can be cancelled by largeness of degeneracy ...

Text

(SDM 07)

3
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Toy model:  Small amplitude to tunnel to a neighboring well, but there
                  are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction
in the central well becomes a linear 
combination of states in all wells  

A crude estimate shows that this tunneling
happens in a time much shorter than 
Hawking evaporation time (SDM 08)

+
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ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E
S ∼ E

n
2 , n ≤ 9

Ψ =Ψ M ⊗
N�

i=1

� 1√
2
(↑ ↓) +

1√
2
(↓ ↑)

�
i

Ψ =Ψ M ⊗
N�

i=1

�
(

1√
2

+ �i)(↑ ↓) + (
1√
2
− �i)(↓ ↑)

�
i

|�i| < �

Sentanglement = N ln 2
Sentanglement > (1− �2) N ln 2

�

Sbek =
A

4G

Γ = V ρL ρR

ρL, ρR

1

Hawking radiation from fuzzballs 

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E
S ∼ E

n
2 , n ≤ 9

Ψ =Ψ M ⊗
N�

i=1

� 1√
2
(↑ ↓) +

1√
2
(↓ ↑)

�
i

Ψ =Ψ M ⊗
N�

i=1

�
(

1√
2

+ �i)(↑ ↓) + (
1√
2
− �i)(↓ ↑)

�
i

|�i| < �

Sentanglement = N ln 2
Sentanglement > (1− �2) N ln 2

�

Sbek =
A

4G

Γ = V ρL ρR

ρL, ρR

Γmicrostate = V ρ̄L ρ̄R

1

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E
S ∼ E

n
2 , n ≤ 9

Ψ =Ψ M ⊗
N�

i=1

� 1√
2
(↑ ↓) +

1√
2
(↓ ↑)

�
i

Ψ =Ψ M ⊗
N�

i=1

�
(

1√
2

+ �i)(↑ ↓) + (
1√
2
− �i)(↓ ↑)

�
i

|�i| < �

Sentanglement = N ln 2
Sentanglement > (1− �2) N ln 2

�

Sbek =
A

4G

Γ = V ρL ρR

ρL, ρR

Γmicrostate = V ρ̄L ρ̄R

Γmicrostate = Γgravity

1

(Chowdhury+SDM 07, 08)

Unitary CFT 
emission rate 
agrees with 
nonunitary 
Hawking 
emission rate

Simple microstates

Make gravity dual

No horizon, but 
ergoregion emission 
gives exactly same 
radiation rate 

4
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2 The non-extremal microstate geometries: Review

In this section we recall the microstate geometries that we wish to study, and explain how a
suitable limit can be taken in which the physics can be described by a dual CFT.

2.1 General nonextremal geometries

Let us recall the setting for the geometries of [13]. Take type IIB string theory, and compactify
10-dimensional spacetime as

M9,1 → M4,1 × T 4 × S1 (2.1)

The volume of T 4 is (2π)4V and the length of S1 is (2π)R. The T 4 is described by coordinates
zi and the S1 by a coordinate y. The noncompact M4,1 is described by a time coordinate t, a
radial coordinate r, and angular S3 coordinates θ,ψ,φ. The solution will have angular momenta
along ψ,φ, captured by two parameters a1, a2. The solutions will carry three kinds of charges.
We have n1 units of D1 charge along S1, n5 units of D5 charge wrapped on T 4 × S1, and np

units of momentum charge (P) along S1. These charges will be described in the solution by
three parameters δ1, δ5, δp. We will use the abbreviations

si = sinh δi, ci = cosh δi, (i = 1, 5, p) (2.2)

The metrics are in general non-extremal, so the mass of the system is more than the minimum
needed to carry these charges. The non-extremality is captured by a mass parameter M .

With these preliminaries, we can write down the solutions of interest. The general non-
extremal 3-charge metrics with rotation were given in [23]

ds2 = − f
√

H̃1H̃5

(dt2 − dy2) +
M

√

H̃1H̃5

(spdy − cpdt)2

+

√

H̃1H̃5

(
r2dr2

(r2 + a2
1)(r

2 + a2
2) − Mr2

+ dθ2

)

+

(
√

H̃1H̃5 − (a2
2 − a2

1)
(H̃1 + H̃5 − f) cos2 θ

√

H̃1H̃5

)

cos2 θdψ2

+

(
√

H̃1H̃5 + (a2
2 − a2

1)
(H̃1 + H̃5 − f) sin2 θ

√

H̃1H̃5

)

sin2 θdφ2

+
M

√

H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ
√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt + (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ
√

H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt + (a1s1s5cp − a2c1c5sp)dy]dφ

+

√

H̃1

H̃5

4
∑

i=1

dz2
i (2.3)
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where

H̃i = f + M sinh2 δi, f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =
M cos2 θ

H̃1
[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+
M sin2 θ

H̃1
[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1
dt ∧ dy − Ms5c5

H̃1
(r2 + a2

2 + Ms2
1) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)
(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)
(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =
πM

4G(5)
(s2

1 + s2
5 + s2

p +
3

2
) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =
π

4G(5)
[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =
gα′3

V
n1 (2.12)

Q5 = gα′n5 (2.13)

Qp =
g2α′4

V R2
np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits of
the parameters in the solution and find solutions which have no horizons or singularities. In
[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal

5
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5

(Jejalla, Madden, Ross 
Titchener ’05)
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where there is no incoming wave, but we still have an outgoing wave carrying energy out to
infinity. These instability frequencies are given by solutions to the transcendental equation

−e−iνπ Γ(1 − ν)

Γ(1 + ν)

(κ

2

)2ν
=

Γ(ν)

Γ(−ν)

Γ(1
2(1 + |ζ| + ξ − ν))Γ(1

2 (1 + |ζ|− ξ − ν))

Γ(1
2(1 + |ζ| + ξ + ν))Γ(1

2 (1 + |ζ|− ξ + ν))
(3.50)

We reproduce the solution to this equation, found in [14], in appendix B. In the large R limit
(2.27) the instability frequencies are real to leading order

ω " ωR =
1

R
(−l − mψm + mφn − |− λ − mψn + mφm|− 2(N + 1)) (3.51)

where N ≥ 0 is an integer. The imaginary part of the frequency is found by iterating to a
higher order; the result is

ωI =
1

R

(

2π

[l!]2

[

(ω2 − λ2

R2
)
Q1Q5

4R2

]l+1
l+1+NCl+1

l+1+N+|ζ|Cl+1

)

(3.52)

Note that ωI > 0, so we have an exponentially growing perturbation. Our task will be to
reproduce (3.51),(3.52) from the microscopic computation.

4 The Microscopic Model: the D1-D5 CFT

In this section we discuss the CFT duals of the geometries of [13]. Recall that we are working
with IIB string theory compactified to M4,1×S1×T 4. The S1 is parameterized by a coordinate
y with

0 ≤ y < 2πR (4.53)

The T 4 is described by 4 coordinates z1, z2, z3, z4. Let the M4,1 be spanned by t, x1, x2, x3, x4.
We have n1 D1 branes on S1, and n5 D5 branes on S1 × T 4. The bound state of these branes
is described by a 1+1 dimensional sigma model, with base space (y, t) and target space a
deformation of the orbifold (T 4)n1n5/Sn1n5

(the symmetric product of n1n5 copies of T 4). The
CFT has N = 4 supersymmetry, and a moduli space which preserves this supersymmetry. It
is conjectured that in this moduli space we have an ‘orbifold point’ where the target space is
just the orbifold (T 4)n1n5/Sn1n5

[28].
The CFT with target space just one copy of T 4 is described by 4 real bosons X1, X2, X3,

X4 (which arise from the 4 directions z1, z2, z3, z4), 4 real left moving fermions ψ1,ψ2,ψ3,ψ4

and 4 real right moving fermions ψ̄1, ψ̄2, ψ̄3, ψ̄4. The central charge is c = 6. The complete
theory with target space (T 4)n1n5/Sn1n5

has n1n5 copies of this c = 6 CFT, with states that
are symmetrized between the n1n5 copies. The orbifolding also generates ‘twist’ sectors, which
are created by twist operators σk. A detailed construction of the twist operators is given in
[19, 20], but we summarize here the properties that will be relevant to us.

The twist operator of order k links together k copies of the c = 6 CFT so that the Xi,ψi, ψ̄i

act as free fields living on a circle of length k(2πR). Thus we end up with a c = 6 CFT on a
circle of length k(2πR). We term each separate c = 6 CFT a component string. Thus if we are
in the completely untwisted sector, then we have n1n5 component strings, each giving a c = 6
CFT living on a circle of length 2πR. If we twist k of these component strings together by a
twist operator, then they turn into one component string of length k(2πR). In a generic CFT
state there will be component strings of many different twist orders ki with

∑

i ki = n1n5.
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where there is no incoming wave, but we still have an outgoing wave carrying energy out to
infinity. These instability frequencies are given by solutions to the transcendental equation
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=
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(3.50)

We reproduce the solution to this equation, found in [14], in appendix B. In the large R limit
(2.27) the instability frequencies are real to leading order
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where N ≥ 0 is an integer. The imaginary part of the frequency is found by iterating to a
higher order; the result is
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(3.52)

Note that ωI > 0, so we have an exponentially growing perturbation. Our task will be to
reproduce (3.51),(3.52) from the microscopic computation.
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In this section we discuss the CFT duals of the geometries of [13]. Recall that we are working
with IIB string theory compactified to M4,1×S1×T 4. The S1 is parameterized by a coordinate
y with

0 ≤ y < 2πR (4.53)

The T 4 is described by 4 coordinates z1, z2, z3, z4. Let the M4,1 be spanned by t, x1, x2, x3, x4.
We have n1 D1 branes on S1, and n5 D5 branes on S1 × T 4. The bound state of these branes
is described by a 1+1 dimensional sigma model, with base space (y, t) and target space a
deformation of the orbifold (T 4)n1n5/Sn1n5

(the symmetric product of n1n5 copies of T 4). The
CFT has N = 4 supersymmetry, and a moduli space which preserves this supersymmetry. It
is conjectured that in this moduli space we have an ‘orbifold point’ where the target space is
just the orbifold (T 4)n1n5/Sn1n5

[28].
The CFT with target space just one copy of T 4 is described by 4 real bosons X1, X2, X3,

X4 (which arise from the 4 directions z1, z2, z3, z4), 4 real left moving fermions ψ1,ψ2,ψ3,ψ4

and 4 real right moving fermions ψ̄1, ψ̄2, ψ̄3, ψ̄4. The central charge is c = 6. The complete
theory with target space (T 4)n1n5/Sn1n5

has n1n5 copies of this c = 6 CFT, with states that
are symmetrized between the n1n5 copies. The orbifolding also generates ‘twist’ sectors, which
are created by twist operators σk. A detailed construction of the twist operators is given in
[19, 20], but we summarize here the properties that will be relevant to us.

The twist operator of order k links together k copies of the c = 6 CFT so that the Xi,ψi, ψ̄i

act as free fields living on a circle of length k(2πR). Thus we end up with a c = 6 CFT on a
circle of length k(2πR). We term each separate c = 6 CFT a component string. Thus if we are
in the completely untwisted sector, then we have n1n5 component strings, each giving a c = 6
CFT living on a circle of length 2πR. If we twist k of these component strings together by a
twist operator, then they turn into one component string of length k(2πR). In a generic CFT
state there will be component strings of many different twist orders ki with

∑

i ki = n1n5.
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where there is no incoming wave, but we still have an outgoing wave carrying energy out to
infinity. These instability frequencies are given by solutions to the transcendental equation
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We reproduce the solution to this equation, found in [14], in appendix B. In the large R limit
(2.27) the instability frequencies are real to leading order

ω " ωR =
1

R
(−l − mψm + mφn − |− λ − mψn + mφm|− 2(N + 1)) (3.51)

where N ≥ 0 is an integer. The imaginary part of the frequency is found by iterating to a
higher order; the result is
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Note that ωI > 0, so we have an exponentially growing perturbation. Our task will be to
reproduce (3.51),(3.52) from the microscopic computation.

4 The Microscopic Model: the D1-D5 CFT

In this section we discuss the CFT duals of the geometries of [13]. Recall that we are working
with IIB string theory compactified to M4,1×S1×T 4. The S1 is parameterized by a coordinate
y with

0 ≤ y < 2πR (4.53)

The T 4 is described by 4 coordinates z1, z2, z3, z4. Let the M4,1 be spanned by t, x1, x2, x3, x4.
We have n1 D1 branes on S1, and n5 D5 branes on S1 × T 4. The bound state of these branes
is described by a 1+1 dimensional sigma model, with base space (y, t) and target space a
deformation of the orbifold (T 4)n1n5/Sn1n5

(the symmetric product of n1n5 copies of T 4). The
CFT has N = 4 supersymmetry, and a moduli space which preserves this supersymmetry. It
is conjectured that in this moduli space we have an ‘orbifold point’ where the target space is
just the orbifold (T 4)n1n5/Sn1n5

[28].
The CFT with target space just one copy of T 4 is described by 4 real bosons X1, X2, X3,

X4 (which arise from the 4 directions z1, z2, z3, z4), 4 real left moving fermions ψ1,ψ2,ψ3,ψ4

and 4 real right moving fermions ψ̄1, ψ̄2, ψ̄3, ψ̄4. The central charge is c = 6. The complete
theory with target space (T 4)n1n5/Sn1n5

has n1n5 copies of this c = 6 CFT, with states that
are symmetrized between the n1n5 copies. The orbifolding also generates ‘twist’ sectors, which
are created by twist operators σk. A detailed construction of the twist operators is given in
[19, 20], but we summarize here the properties that will be relevant to us.

The twist operator of order k links together k copies of the c = 6 CFT so that the Xi,ψi, ψ̄i

act as free fields living on a circle of length k(2πR). Thus we end up with a c = 6 CFT on a
circle of length k(2πR). We term each separate c = 6 CFT a component string. Thus if we are
in the completely untwisted sector, then we have n1n5 component strings, each giving a c = 6
CFT living on a circle of length 2πR. If we twist k of these component strings together by a
twist operator, then they turn into one component string of length k(2πR). In a generic CFT
state there will be component strings of many different twist orders ki with

∑
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which gives

1

sin 2θ

d

dθ

(

sin 2θ
d

dθ
χ

)

+

[
(

ω2 − λ2

R2

)

(a2
1 sin2 θ + a2

2 cos2 θ)−
m2

ψ

cos2 θ
−

m2
φ

sin2 θ

]

χ + Λχ = 0

(3.43)

1

r

d

dr

(
g(r)

r

d

dr
h

)

+ (1 − ν2)h − (r2
+ − r2

−)

(
ζ2

r2 − r2
+
− ξ2

r2 − r2
−

)

h = 0 (3.44)

where

g(r) = (r2 − r2
−)(r2 − r2

+)

ξ ≡ ω(R − λϑ − mφn + mψm

ζ ≡ −λ − mψn + mφm

( ≡
c2
1c

2
5c

2
p − s2

1s
2
5s

2
p

s1c1s5c5

ϑ ≡ c2
1c

2
5 − s2

1s
2
5

s1c1s5c5
spcp

ν2 ≡ 1 + Λ −
(

ω2 − λ2

R2

)

(r2
+ + Ms2

1 + Ms2
5) − (ωcp −

λ

R
sp)

2M (3.45)

Introducing the dimensionless radial coordinate

x ≡
r2 − r2

+

r2
+ − r2

−
(3.46)

the radial equation becomes

∂x[x(x + 1)∂xh] +
1

4

[

κ2x + (1 − ν2) +
ξ2

x + 1
− ζ2

x

]

h = 0 (3.47)

where

κ2 ≡ (ω2 − λ2

R2
)(r2

+ − r2
−) (3.48)

In our large R limit we have a2
i (ω

2− λ2

R2 ) → 0, so the angular equation reduces to the Laplacian
on S3. Thus

Λ = l(l + 2) + O(a2
i (ω

2 − λ2

R2
)) (3.49)

3.2 The instability frequencies

The radial equation cannot be solved exactly, but we can solve it in an ‘outer region’ and
an ‘inner region’ and match solutions across the overlap of these regions. We reproduce this
computation of [14] in appendix A. The instability frequencies correspond to the situation

9

(Cardoso, Dias, Jordan, Hovdebo, Myers, ’06)
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Real degrees of freedom at horizon 
in the ‘membrane paradigm’ 
                                                     (SDM 10)

Low energy modes (E ~ kT)  involved in Hawking radiation 
needed order unity correction ...

δSent

Sent
< 2�

We indeed find a complete change in the evolution of these modes ...

Is the traditional back hole geometry of any use at all ?
If so, it can only be for high energy modes (E >> kT) ...

19



Information paradox:   How can different microstates radiate low energy
                                    radiation (E~kT) differently  ? 

Infall problem:           Is there some approximation in which high 
                                 energy infalling objects (E>>kT) behave the same 
                                (perhaps seeing the traditional black hole geometry)

Thus the information paradox and the infall problem are,
in a sense, opposite problems ...

20



Low energy quanta suffer
order unity correction 

High energy quanta see only a light 
fuzz and sail through ...

A possibility

Somewhat similar to non-locality ...

(some gentle nonlocal effect changes low energy 
quanta by order unity, but high energy quanta travel
on the traditional metric of the hole)

But the situation appears to be more interesting ...

(see also Balasubramanian, de Boer, 
Jejjala, Simon 05)
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Spectrum of these modes is same as spectrum of quanta in traditional black hole 
geometry

Hilbert space of infalling quanta maps into Hilbert space of collective excitations

Impact of E>>kT quantum 
excites collective modes 
of fuzzball

If one Hilbert space maps faithfully into another one, we cannot tell the 
difference ... so we cannot ‘know’ that the quantum has been converted into 
collective modes ...

We will use some ideas of Israel - Maldacena - Van Raamsdonk in making 
sense of this picture ...

(SDM + Plumberg: arXiv: 1101.4899) 
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Central part of eternal black hole 
diagram looks like a piece of 
Minkowski spacetime,  
Horizons look like Rindler horizons

|0�M =
�

i e
−Ei

4π |Ei�L|Ei�R

Scalar field    :  Can write Minkowski vacuum in terms of left and right 
Rindler states

What is the corresponding decomposition for the gravitational field 
        ??

φ

hµν
(see also Jacobson 2012)

Let us recall some earlier results ...
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Black Holes : Israel (1976):  The two sides of the eternal black hole 
are the two entangled copies of a thermal system in 
thermo-field-dynamics

Re[t]Im[t]

Maldacena (2001):  This implies that the dual to the 
eternal black hole is two entangled copies of a CFT

Van Raamsdonk (2009):  CFT states are dual to 
gravity solutions ... so we should be able to write 
an entangled sum of CFT states as an entangled 
sum of gravity states ...

24



�
⊗ =

But what do we do with CFT states which are dual to black holes with a 
horizon ?

(Van Raamsdonk 
               2009)

⊗ = ??
horizon

But the lesson from fuzzballs is that there are no microstates with 
horizons !!  Thus there is only one ‘class’ of microstates, they just vary in 
their complexity

We can write down the properties we expect from the Rindler states ...
25



(a) The state of the right wedge should ‘end’ in  
     the right wedge

(b) The states are eigenstates the full 
     Hamiltonian, so interactions are included

(c) Near the horizon, energies are high, so 
     interactions are large ... very nonlinear

(d) The number of states should give S=A/4

These are just the properties of the fuzzball states ....Suggest a 
Van Raamsdonk type relation

=
� ⊗

Fuzzballs are the Rindler states for gravity ...
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This picture gives a conjecture for what is being counted in de Sitter 
entropy ...

Write Vacuum as entangled sum 
(following Van Raamsdonk idea)

Count all compact manifolds with 
negative cosmological constant 
ending before reaching the horizon

(SDM 12)

What happens when a quantum with E>> kT falls onto the fuzzball ??

We will put together two simple observations ...
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|0�M = C
�

i e
−Ei

2 |Ei�L|Ei�R, C =
��

i e
−Ei

�− 1
2

(A)  Minkowski vacuum

M �0|ÔR|0�M = C2
�

i,j e
−Ei

2 e−
Ej
2 L�Ei|Ej�LR�Ei|ÔR|Ej�R

= C2
�

i e
−Ei

R�Ei|ÔR|Ei�R

Expectation value of an operator in the right wedge is a thermal average 
over Rindler states ...

=
� ⊗
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(B) For appropriate operators, in generic states, we have

R�Ek|ÔR|Ek�R ≈ 1�
l e

−El

�
i e

−Ei
R�Ei|ÔR|Ei�R = M �0|ÔR|0�M

(Just the usual statement that measurements in one sample can be replaced by 
the ensemble)

≈ � ⊗

=

E � kT

This appears to be a kind of ‘complementarity’ ...
5
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Summary

30



(A) The information paradox is real

δSent

Sent
< 2�

(SDM arXiv: 09091038) 

We cannot assume that there are ‘subtle’ quantum gravity effects hiding in the 
geometry, which leave the low energy evolution unaffected to leading order

O(�) corrections will not help
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(B) Microstates in string theory produce the needed structure (fuzzballs)

Evolution of low energy 
modes at horizon 
is completely altered

ψL = ψS + ψA

ψ = e−iEStψS + e−iEAtψA

∆E = EA − ES

∆t =
π

∆E
S ∼ E

n
2 , n ≤ 9

Ψ =Ψ M ⊗
N�

i=1

� 1√
2
(↑ ↓) +

1√
2
(↓ ↑)

�
i

Ψ =Ψ M ⊗
N�

i=1

�
(

1√
2

+ �i)(↑ ↓) + (
1√
2
− �i)(↓ ↑)

�
i

|�i| < �

Sentanglement = N ln 2
Sentanglement > (1− �2) N ln 2

�

Sbek =
A

4G

Γ = V ρL ρR

ρL, ρR

Γmicrostate = V ρ̄L ρ̄R

1

Radiation from simple
microstates matched 
exactly to Hawking 
radiation from CFT state

No horizon for
individual microstates
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(C) Semiclassical evolution is violated by spreading of wavefunction over
      very large phase space

A ∼ e−Scl

N ∼ eSbek

can be offset by 

This spread of shell wavefunction over space of fuzzball states is what 
bypasses the Hawking problem ...
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Wavefunction on initial slice spreads over vast space of fuzzball states ...

The good slicing argument breaks down  ...

λ ∼ R (15)
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2

S(E) =?

Spreading over phase space can have important
consequences for Cosmology ...
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(D) The ‘infall problem’ is the opposite of the information paradox ...

≈ � ⊗

=

E � kT

E ∼ kT
Structure at horizon, no information 
problem

High energy impacts generate collective vibrations that can be
approximated for short times by traditional geometry
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needed a radical change
in the picture of the horizon

Equivalence principle fails
at the natural size of the 
object
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Bound states in string theory are ‘horizon 
sized’, large phase space leads to spreading of 
wavefunctions over a vast phase space:
Cannot localize on a ‘shell’ wavefunction
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