The black hole possibility tree

Santa Barbara 2012

Black holes and beyond (arXiv:I 205.0776)

Some common questions (and my responses) http://www.physics.ohio-state.edu/~mathur/

The black hole information paradox has been puzzling for a long time But now there are several definite computations that guide us through the possible paths towards a resolution ...

Can address basic questions:
What happens to a collapsing shell ?
What is de Sitter entropy counting ?
Is there a notion of 'complementarity' ? etc ...
(A) The information paradox: Leading order Hawking computation

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

If we have a horizon, then we do not have a time-independent slicing of the geometry

Not like a 'ball' ...

Older quanta move apart

Possibilities:

(a) Complete evaporation

Radiation is entangled, but there is nothing that it is entangled with not a quantum state
(b) Remnant

Remnant needs to have unbounded degeneracy while having bounded mass and volume ... problematic
(B) What do we need to do to resolve the paradox?

In one sense very little, in another sense a lot!

People looked for deformations of the horizon ...

If we get such 'hair', then the horizon structure is altered, and the Hawking argument is invalidated

The problem is that people could not find the 'hair' ... this is what makes the problem difficult

(C) Many string theorists did not worry too much about the paradox, assuming that 'small corrections' would make the entanglement go away

> 'Nothing happens at horizon':
> Can only have a small correction at each step of pair creation

But number of pairs N is large
State may be non-entangled overall ??

But we know now that this is not true ... if correction at each step is $O(\epsilon)$ then

$$
\begin{equation*}
\frac{\delta S_{e n t}}{S_{e n t}}<2 \epsilon \tag{SDMarXiv:09091038}
\end{equation*}
$$

(see also recent work of Giddings et al ...)

Resolving the puzzle :

Work of many people has contributed to this picture ...

Avery, Balasubramanian, Bena, Chowdhury, de Boer, Denef, Gimon, Giusto, Keski-Vakkuri, Levi, Lunin, Maldacena, Maoz, Park, Peet, Potvin, Ross, Ruef, Saxena, Simon, Skenderis, Srivastava, Taylor, Turton, Warner ...

What do the microstates of black holes look like in string theory?

That is, what is the nature of brane bound states when the number of branes is large ?

The traditional expectation ...
weak coupling

strong coupling

But it seems in string theory the opposite happens ...

Compact directions pinch off
KK Monopoles and antimonoples
Fluxes etc. on cycles
General picture: Manifold ends in allowed sources of string theory, Horizon does not form

So finally we do find the hair, but it is nonperturbative ...

In the beginning some string theorists found this picture strange, because there was a general belief that 'nothing should happen at the horizon'

Should we get 'lab physics' in a good slicing ?

Maybe quantum fluctuations at planck scale do not affect low energy physics?

Actually one cannot hide information at planck scale this way ...
But more importantly, this is NOT what we want ...

Small corrections will not help (Traditional horizon)

Need order
 unity correction (hair)

$$
\begin{gathered}
2 \\
\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle) \\
+\alpha_{k} \frac{1}{\sqrt{2}}(|0\rangle|0\rangle-|1\rangle|1\rangle) \\
\alpha_{k}=O(1)
\end{gathered}
$$

Evolution at horizon in good slicing of of low energy modes cannot be close to the evolution in this room

Fuzzballs give a realization of 'hair’: Energy eigenstates of the black hole do not have a traditional horizon.

That is, there is no region around a 'horizon' where we can make a good slicing and get laboratory evolution for low energy modes

We can now conjecture what happens to a collapsing shell ...

There is a small amplitude for the shell to tunnel into a fuzzball state ...

$$
S_{\text {tunnel }} \sim \frac{1}{G} \int R d^{4} x \sim \frac{1}{G} \frac{1}{(G M)^{2}}(G M)^{4} \sim G M^{2}
$$

$$
\mathcal{A} \sim e^{-S_{\text {tunnel }}}
$$

Text
Amplitude to tunnel is very small

$$
\begin{equation*}
\mathcal{N} \sim e^{S_{b e k}} \sim e^{G M^{2}} \tag{3}
\end{equation*}
$$

But the number of states that one can tunnel to is very large!

Smallness of amplitude can be cancelled by largeness of degeneracy ...
(SDM 07)

Toy model: Small amplitude to tunnel to a neighboring well, but there are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction in the central well becomes a linear combination of states in all wells

A crude estimate shows that this tunneling happens in a time much shorter than Hawking evaporation time (SDM 08)

$+$

Toy model: Small amplitude to tunnel to a neighboring well, but there are a correspondingly large number of adjacent wells

In a time of order unity, the wavefunction in the central well becomes a linear combination of states in all wells

A crude estimate shows that this tunneling happens in a time much shorter than Hawking evaporation time (SDM 08)

$+$

Hawking radiation from fuzzballs

$$
\Gamma=V \rho_{L} \rho_{R}
$$

$\Gamma_{\text {microstate }}=V \bar{\rho}_{L} \bar{\rho}_{R}$

Simple microstates
Make gravity dual
No horizon, but ergoregion emission gives exactly same radiation rate

$$
\Gamma_{\text {microstate }}=\Gamma_{\text {gravity }}
$$

$$
\begin{aligned}
\mathrm{d} s^{2}= & -\frac{f}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(\mathrm{~d} t^{2}-\mathrm{d} y^{2}\right)+\frac{M}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(s_{p} \mathrm{~d} y-c_{p} \mathrm{~d} t\right)^{2} \\
& +\sqrt{\tilde{H}_{1} \tilde{H}_{5}}\left(\frac{r^{2} \mathrm{~d} r^{2}}{\left(r^{2}+a_{1}^{2}\right)\left(r^{2}+a_{2}^{2}\right)-M r^{2}}+\mathrm{d} \theta^{2}\right) \\
& +\left(\sqrt{\tilde{H}_{1} \tilde{H}_{5}}-\left(a_{2}^{2}-a_{1}^{2}\right) \frac{\left(\tilde{H}_{1}+\tilde{H}_{5}-f\right) \cos ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\right) \cos ^{2} \theta \mathrm{~d} \psi^{2} \\
& +\left(\sqrt{\tilde{H}_{1} \tilde{H}_{5}}+\left(a_{2}^{2}-a_{1}^{2}\right) \frac{\left(\tilde{H}_{1}+\tilde{H}_{5}-f\right) \sin ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\right) \sin ^{2} \theta \mathrm{~d} \phi^{2} \\
& +\frac{M}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left(a_{1} \cos ^{2} \theta \mathrm{~d} \psi+a_{2} \sin ^{2} \theta \mathrm{~d} \phi\right)^{2} \\
& +\frac{2 M \cos ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left[\left(a_{1} c_{1} c_{5} c_{p}-a_{2} s_{1} s_{5} s_{p}\right) \mathrm{d} t+\left(a_{2} s_{1} s_{5} c_{p}-a_{1} c_{1} c_{5} s_{p}\right) \mathrm{d} y\right] \mathrm{d} \psi \\
& +\frac{2 M \sin ^{2} \theta}{\sqrt{\tilde{H}_{1} \tilde{H}_{5}}}\left[\left(a_{2} c_{1} c_{5} c_{p}-a_{1} s_{1} s_{5} s_{p}\right) \mathrm{d} t+\left(a_{1} s_{1} s_{5} c_{p}-a_{2} c_{1} c_{5} s_{p}\right) \mathrm{d} y\right] \mathrm{d} \phi \\
& +\sqrt{\frac{\tilde{H}_{1}}{\tilde{H}_{5}} \sum_{i=1}^{4}} \mathrm{~d} z_{i}^{2}
\end{aligned}
$$

$$
Q_{1}=\frac{g \alpha^{\prime 3}}{V} n_{1}
$$

$$
Q_{5}=g \alpha^{\prime} n_{5}
$$

$$
Q_{p}=\frac{g^{2} \alpha^{4}}{V R^{2}} n_{p}
$$

(Jejalla, Madden, Ross
Titchener '05)
$\tilde{H}_{i}=f+M \sinh ^{2} \delta_{i}, \quad f=r^{2}+a_{1}^{2} \sin ^{2} \theta+a_{2}^{2} \cos ^{2} \theta$
$Q_{1}=M \sinh \delta_{1} \cosh \delta_{1}, \quad Q_{5}=M \sinh \delta_{5} \cosh \delta_{5}, \quad Q_{p}=M \sinh \delta_{p} \cosh \delta_{p}$

$$
\Gamma_{\text {microstate }}=V \bar{\rho}_{L} \bar{\rho}_{R}
$$

(Cardoso, Dias, Jordan, Hovdebo, Myers, '06)

$$
\omega \simeq \omega_{R}=\frac{1}{R}\left(-l-m_{\psi} m+m_{\phi} n-\left|-\lambda-m_{\psi} n+m_{\phi} m\right|-2(N+1)\right)
$$

$$
\omega_{I}=\frac{1}{R}\left(\frac{2 \pi}{[l!]^{2}}\left[\left(\omega^{2}-\frac{\lambda^{2}}{R^{2}}\right) \frac{Q_{1} Q_{5}}{4 R^{2}}\right]^{l+1}{ }^{l+1+N} C_{l+1}{ }^{l+1+N+|\zeta|} C_{l+1}\right)
$$

$\zeta \equiv-\lambda-m_{\psi} n+m_{\phi} m$
$N \geq 0$

$$
\Gamma_{\text {microstate }}=\Gamma_{\text {gravity }}
$$

Real degrees of freedom at horizon in the 'membrane paradigm'
 (SDM I0)

Low energy modes ($\mathrm{E} \sim \mathrm{kT}$) involved in Hawking radiation $\frac{\delta S_{\text {ent }}}{S_{\text {ent }}}<2 \epsilon$
needed order unity correction ...

We indeed find a complete change in the evolution of these modes ...

Is the traditional back hole geometry of any use at all ? If so, it can only be for high energy modes ($\mathrm{E} \gg \mathrm{kT}$) ...

Information paradox: How can different microstates radiate low energy radiation (E~kT) differently ?

Infall problem:
Is there some approximation in which high energy infalling objects ($\mathrm{E} \gg \mathrm{kT}$) behave the same (perhaps seeing the traditional black hole geometry)

Thus the information paradox and the infall problem are, in a sense, opposite problems ...

A possibility

Low energy quanta suffer order unity correction

High energy quanta see only a light fuzz and sail through ...
(see also Balasubramanian, de Boer, Jejjala, Simon 05)

Somewhat similar to non-locality ...
(some gentle nonlocal effect changes low energy quanta by order unity, but high energy quanta travel on the traditional metric of the hole)

But the situation appears to be more interesting ...

Impact of $\mathrm{E} \gg \mathrm{kT}$ quantum excites collective modes of fuzzball

(SDM + Plumberg: arXiv: I IO I.4899)
Spectrum of these modes is same as spectrum of quanta in traditional black hole geometry

Hilbert space of infalling quanta maps into Hilbert space of collective excitations

If one Hilbert space maps faithfully into another one, we cannot tell the difference ... so we cannot 'know' that the quantum has been converted into collective modes ...

We will use some ideas of Israel - Maldacena - Van Raamsdonk in making sense of this picture ...

Central part of eternal black hole diagram looks like a piece of Minkowski spacetime, Horizons look like Rindler horizons

Scalar field ϕ : Can write Minkowski vacuum in terms of left and right Rindler states

$$
|0\rangle_{M}=\sum_{i} e^{-\frac{E_{i}}{4 \pi}}\left|E_{i}\right\rangle_{L}\left|E_{i}\right\rangle_{R}
$$

What is the corresponding decomposition for the gravitational field $h_{\mu \nu}$??
(see also Jacobson 2012)

Let us recall some earlier results ...

Black Holes :

Israel (1976): The two sides of the eternal black hole are the two entangled copies of a thermal system in thermo-field-dynamics
$\operatorname{Im}[t]$

Maldacena (200I): This implies that the dual to the eternal black hole is two entangled copies of a CFT

Van Raamsdonk (2009): CFT states are dual to gravity solutions ... so we should be able to write an entangled sum of CFT states as an entangled sum of gravity states ...

(Van Raamsdonk 2009)

But what do we do with CFT states which are dual to black holes with a horizon?

= ? ?

But the lesson from fuzzballs is that there are no microstates with horizons !! Thus there is only one 'class' of microstates, they just vary in their complexity

We can write down the properties we expect from the Rindler states ...

(a) The state of the right wedge should 'end' in the right wedge
(b) The states are eigenstates the full Hamiltonian, so interactions are included
(c) Near the horizon, energies are high, so interactions are large ... very nonlinear
(d) The number of states should give $S=A / 4$

These are just the properties of the fuzzball statesSuggest a Van Raamsdonk type relation

Fuzzballs are the Rindler states for gravity ...

This picture gives a conjecture for what is being counted in de Sitter entropy ...

Write Vacuum as entangled sum (following Van Raamsdonk idea)

Count all compact manifolds with negative cosmological constant ending before reaching the horizon
(SDM I2)

What happens when a quantum with E>> kT falls onto the fuzzball ??

We will put together two simple observations ...

$$
|0\rangle_{M}=C \sum_{i} e^{-\frac{E_{i}}{2}}\left|E_{i}\right\rangle_{L}\left|E_{i}\right\rangle_{R}, \quad C=\left(\sum_{i} e^{-E_{i}}\right)^{-\frac{1}{2}}
$$

Expectation value of an operator in the right wedge is a thermal average over Rindler states ...

$$
\begin{aligned}
{ }_{M}\langle 0| \hat{O}_{R}|0\rangle_{M} & =C^{2} \sum_{i, j} e^{-\frac{E_{i}}{2}} e^{-\frac{E_{j}}{2}}{ }_{L}\left\langle E_{i} \mid E_{j}\right\rangle_{L R}\left\langle E_{i}\right| \hat{O}_{R}\left|E_{j}\right\rangle_{R} \\
& =C^{2} \sum_{i} e^{-E_{i}}{ }_{R}\left\langle E_{i}\right| \hat{O}_{R}\left|E_{i}\right\rangle_{R}
\end{aligned}
$$

(B) For appropriate operators, in generic states, we have

$$
{ }_{R}\left\langle E_{k}\right| \hat{O}_{R}\left|E_{k}\right\rangle_{R} \approx \frac{1}{\sum_{l} e^{-E_{l}}} \sum_{i} e^{-E_{i}}{ }_{R}\left\langle E_{i}\right| \hat{O}_{R}\left|E_{i}\right\rangle_{R}={ }_{M}\langle 0| \hat{O}_{R}|0\rangle_{M}
$$

(Just the usual statement that measurements in one sample can be replaced by the ensemble)

(5)

This appears to be a kind of 'complementarity' ...

Summary
(A) The information paradox is real

$$
\begin{aligned}
& \quad \frac{\delta S_{e n t}}{S_{\text {ent }}}<2 \epsilon \\
& (\text { SDM arXiv: } 09091038 \text {) }
\end{aligned}
$$

We cannot assume that there are 'subtle' quantum gravity effects hiding in the geometry, which leave the low energy evolution unaffected to leading order
(B) Microstates in string theory produce the needed structure (fuzzballs)

No horizon for individual microstates

Evolution of low energy modes at horizon is completely altered

Radiation from simple microstates matched exactly to Hawking radiation from CFT state
(C) Semiclassical evolution is violated by spreading of wavefunction over very large phase space

$$
\mathcal{A} \sim e^{-S_{c l}}
$$

can be offset by

$$
\mathcal{N} \sim e^{S_{b e k}}
$$

This spread of shell wavefunction over space of fuzzball states is what bypasses the Hawking problem ...

Wavefunction on initial slice spreads over vast space of fuzzball states ...
The good slicing argument breaks down ...

(D) The 'infall problem' is the opposite of the information paradox ...

$$
\bigcirc \quad E \sim k T
$$

Structure at horizon, no information problem

High energy impacts generate collective vibrations that can be approximated for short times by traditional geometry

needed a radical change in the picture of the horizon

> Equivalence principle fails at the natural size of the object

Bound states in string theory are 'horizon sized', large phase space leads to spreading of wavefunctions over a vast phase space:
Cannot localize on a 'shell' wavefunction

