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Introduction

Bekenstein and Hawking gave a universal formula for
the black hole entropy:

SBH =
A

4G

– valid in classical, two derivative theory of gravity.

For a class of extremal supersymmetric black holes in
string theory we now have a microscopic
understanding of this entropy in the limit of large
charges. Strominger, Vafa; ...

SBH(Q) = ln dmicro(Q)

dmicro(Q): number of quantum states carrying a given
set of charges Q ≡ {Q1,Q2, ...}.



More precisely

dmicro(Q) = Tr(−1)2J, J = angular momentum

with the trace taken over states carrying charges Q,
after factoring out the center of mass d.o.f.

– protected from quantum corrections.



Questions

1. Can quantum gravity give us a prescription for
computing the exact black hole entropy taking into
account higher derivative and quantum corrections?

2. Can quantum gravity tell us about other statistical
properties of the microstates besides degeneracy?

Any affirmative answer can be tested against explicit
microscopic results, known in theories with 16 or 32
unbroken supersymmetries.



Plan

1. General formalism for computing extremal black
hole entropy.

2. Tests against microscopic results:

i) Logarithmic corrections to the entropy

ii) Sign of the index

iii) Twisted index

3. Non-supersymmetric, non-extremal black holes.



In the extremal limit a black hole acquires an infinite
throat described by an AdS2 factor, separating the
horizon from the asymptotic space-time.

Full throat geometry:

AdS2 × K

K includes the angular coordinates of space-time as
well as the 6 dimensional space on which we have
compactified string theory.

The metric on the throat:

ds2 = a2
[
−r2dt2 +

dr2

r2

]
+ ds2

K

The original horizon is towards r→ 0.

Original asymptotic space-time is towards r→∞.



Strategy: Analyze euclidean path integral on this
space-time.

Euclidean continuation of the throat metric: t→ −iθ

ds2 = a2
(

r2 dθ2 +
dr2

r2

)
+ ds2

K

Since we can change the period of θ by a rescaling
r→ λr, θ → θ/λ, we choose

θ ≡ θ + 2π

The boundary of AdS2 is at r =∞.



Regularize the infinite volume of AdS2 by putting a
cut-off r ≤ r0.

r = r0

This makes the AdS2 boundary have a finite length

L = 2π a r0



1. Define the partition function:

Zbulk =

∫
Dϕexp[−Action− boundary terms]

ϕ: set of all fields in the theory

Boundary condition: For large r the field
configuration should approach the near horizon
geometry of the black hole.

In the interior we allow all fluctuations including
fluctuations of the topology.

2. From the point of view of the observer at the
boundary r = r0:

Zbulk = Tr
(
e−L H)

H: Hamiltonian, L: boundary length



3. As L→∞

Zbulk= Tr(e−LH)→ d0 e−L E0

(d0,E0): (degeneracy, energy) of ground state.

We identify (ln d0) as the quantum corrected extremal
black hole entropy Smacro

4. Thus we can define Smacro as

Smacro = limL→∞

(
1− L

d
dL

)
ln (Zbulk)



5. On AdS2, deformations of the gauge charges are
non-normalizable modes and hence are not allowed
fluctuations.

⇒ Smacro is the quantum corrected entropy in the
microcanonical ensemble.

⇒ forces us to to include a Gibbons-Hawking type
boundary term in the path integral

exp[−i
∑

k

qk

∮
∂(AdS2)

dθA(k)
θ ]

A(k)
µ : gauge fields on AdS2.

qk: associated electric charge



Classical limit

The dominant saddle point that contributes to Zbulk is
the euclidean black hole:

ds2 = a2
[

(r2 − 1)dθ2 +
dr2

r2 − 1

]
+ ds2

K

= a2(dη2 + sinh2 dθ2) + ds2
K r = cosh η

r = r0

One can show that in the classical limit

Smacro ⇒ Swald



1. Logarithmic corrections to entropy

Typically the leading entropy SBH is a homogeneous
function of the various charges Qi.

e.g. in D=4
SBH(ΛQ) =Λ2 SBH(Q)

Logarithmic corrections: correction to the entropy
∝ ln Λ in the limit of large Λ.

These arise from one loop correction to the leading
saddle point result for Zbulk from loops of massless
fields.

Banerjee, Gupta, A.S.; Banerjee, Gupta, Mandal, A.S.; A.S; Ferrara, Marrani; Bhattacharyya, Panda, A.S.

Mann, Solodukhin; Fursaev; ...



Consider a spherically symmetric extremal black hole
in D=4 with horizon size a

ds2 = a2
(

dr2

r2 − 1
+ (r2 − 1)dθ2 + dψ2 + sin2 ψdφ2

)
+ ds2

compact

There are also fluxes through AdS2 and S2 and vev of
moduli fields.

When the charges scale uniformly by a large number
Λ then

a ∼ Λ

keeping other moduli, e.g. ds2
compact , fixed.



{κn}: eigenvalues of the kinetic operator of four
dimensional massless fields in the near horizon
background.

Non-zero mode contribution to Zbulk:

∏
n

′
κ
−1/2
n = exp

[
−1

2

∑
n

′
lnκn

]
′: remove zero modes from the product / sum

We can use heat kernel expansion to determine the
terms in the exponent proportional to ln a.

– arise from modes with eigenvalues << m2
pl and

hence are insensitive to the ultraviolet cut-off.



Zero mode contribution:

The zero modes are normalizable deformations
generated by gauge transformations with
non-normalizable transformation parameters.

i) Change integration variables from fields to gauge
transformation parameters.

ii) Find a-dependence of the jacobian as well as the
a-dependence of the range of integration of the gauge
transformation parameters.

⇒ determines total a-dependence of Zbulk from
integration over the zero modes.



Final results: S. Banerjee, Gupta, Mandal, A.S.; Ferrara, Marrani; A.S.

The theory scaling of charges logarithmic contribution microscopic

N = 4 with nv matter Qi ∼ Λ, AH ∼ Λ2 0
√

N = 8 Qi ∼ Λ, AH ∼ Λ2 −8 ln Λ
√

N = 2 with nV vector and nH hyper Qi ∼ Λ, AH ∼ Λ2 1
6 (23 + nH − nV) ln Λ ?∗

N = 6 Qi ∼ Λ, AH ∼ Λ2 −4 ln Λ ?

N = 5 Qi ∼ Λ, AH ∼ Λ2 −2 ln Λ ?

N = 3 with nv matter Qi ∼ Λ, AH ∼ Λ2 2 ln Λ ?

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV − 3) ln Λ

√

or K3× S1/ZZN with nV vectors J ∼ Λ3/2, AH ∼ Λ3/2

BMPV in type IIB on T5/ZZN Q1, Q5, n ∼ Λ − 1
4 (nV + 3) ln Λ

√

or K3× S1/ZZN with nV vectors J = 0, AH ∼ Λ3/2

*: various proposals exist but no definite result
Ooguri, Strominger, Vafa; Cardoso, de Wit, Mahapatra; Denef, Moore;

David; Cardoso, de Wit, Mahapatra



2. Sign of the index

4 unbroken supersymmetry⇒ extremal black holes in
D=4 are rotationally invariant⇒ have J = 0.

Thus A.S.; Dabholkar, Gomes, Murthy, A.S.

Tr(−1)2J = Tr(1) = degeneracy = exp[Smacro]

This leads to the conclusion that

Tr(−1)2J = exp[Smacro] and Tr(−1)2J > 0

for a supersymmetric black hole in D=4.



Tr(−1)2J = exp[Smacro] and Tr(−1)2J > 0

In the microscopic counting, performed at weak
coupling, the spectrum may be different, but the
protected index Tr(−1)2J should continue to be
positive, and equal to exp[Smacro].

Positivity of Tr(−1)2J has been tested in many
supersymmetric string theories where the
microscopic index is known exactly. A.S.

This holds even for finite charges, after subtracting
the contribution to the index from multi-centered
black holes.

So far there are no counterexamples.



Some microscopic results for the index of single centered black
holes in heterotic string theory on T6

(Q2, P2)\Q.P 2 3 4 5 6 7

(2,2) 648 0 0 0 0 0

(2,4) 50064 0 0 0 0 0

(2,6) 1127472 25353 0 0 0 0

(4,4) 3859456 561576 12800 0 0 0

(4,6) 110910300 18458000 1127472 0 0 0

(6,6) 4173501828 920577636 110910300 8533821 153900 0

(2,10) 185738352 16844421 16491600 0 0 0

No negative index

Blue entries represent states with Q2P2 − (Q.P)2 < 0 for which
there are no classical single centered black hole solutions.



3. Twisted index A.S.

Suppose the theory has a discrete ZZN symmetry
generated by g, which is not part of a continuous
gauge symmetry, and which commutes with the
unbroken supersymmetries of the black hole.

What is the value of the protected index

Tr{(−1)2Jg}

for a supersymmetric black hole?

By our earlier argument

Tr{(−1)2Jg} = Tr g



For computing Tr(g) in the euclidean path integral
approach, we need to evaluate the partition function
with a g-twisted boundary condition along the
euclidean time circle.

r = r0

g

The euclidean black hole which gave dominant
contribution to Zbulk is no longer allowed since the
time circle, along which we have g-twist, is
contractible.



However an appropriate ZZN orbifold of the original
saddle point geometry does contribute to the path
integral.

The corresponding action is 1/N times the action of
an Euclidean black hole.

This leads to the prediction:

Tr{(−1)2Jg} ∼ exp[SBH/N]

This has been verified in a wide class of
supersymmetric string theories where exact
microscopic results for many twisted indices are
known.



Other tests

4. Black holes have also been used to compute O(1)
correction to the entropy due to one loop contribution
from massive string loops.

Cardoso, de Wit, Kappeli, Mohaupt; David, Jatkar, A.S.

5. Progress has been made towards evaluating Zbulk
using localization techniques.

N. Banerjee, S. Banerjee, Gupta, Mandal, A.S.; Dabhokar, Gomes, Murthy



Given the success of this program we can extend it to
the study of logarithmic corrections to
non-supersymmetric black hole entropy.

1. Non-supersymmetric extremal black hole:

The same algorithm works since the near horizon
geometry contains an AdS2 factor.

2. Non-extremal black holes:

In this case the euclidean path integral gives the
partition function in the grand canonical ensemble.

Gibbons, Hawking

We need to remove the thermal gas contribution to
the partition function and then take Laplace transform
to get the microcanonical entropy.



Extremal black holes

Extremal Kerr in pure gravity has a correction

16
45

ln AH

Extremal Kerr-Newmann in Einstein-Maxwell theory
has a more complicated formula for the logarithmic
correction. Bhattacharyya, Panda, A.S.

Can Kerr/CFT correspondence explain these
microscopically? Guica, Hartman, Song, Strominger

Note: Cardy limit formula is not useful here and even
for the extremal supersymmetric black holes.



Non-extremal black holes

Example: In D=4 the Schwarzschild black hole
entropy has logarithmic correction

77
90

ln AH

– counts number of rotationally invariant states in
unit mass range.

(related earlier work by Fursaev, Solodukhin)

In contrast loop quantum gravity analysis of the black
hole entropy gives a logarithmic correction of −ln AH

Majumdar, Kaul; Meissner; Ghosh, Mitra; Engle, Noui, Perez, Pranzetti; ...

???



Conclusion

Quantum gravity is capable of explaining detailed
statistical properties of the microstates.

Besides giving a systematic procedure for computing
corrections to the leading Bekenstein-Hawking result,
it also predicts certain properties of the microstates
which are quite surprising from the point of view of
the microscopic description.

– sign of the index

– asymptotic growth of the twisted index


