Toy Models and Fast Scrambling (II) work with N. Lashkari, P. Hayden, M. Hastings, T. Osborne

Douglas Stanford

Stanford Unversity

May 21, 2012

Duck-billed Platypus

- ► lays eggs
- has a beak
- ▶ has fur

Fast Scrambler

- Hamiltonian
- scrambles all local perturbations
- ▶ in log time

Plan

- 1. eggs + fur (Hamiltonian + scrambles in log time)
- 2. eggs + beak (Hamiltonian + scrambles all local perturbations)
- 3. A Lieb-Robinson-type lower bound
- 4. Scrambling and AdS/CFT

Ising

Ising model on a (nonlocal) graph G = (V, E):

$$H = \frac{|V|}{|E|} \sum_{(i,j) \in \text{ edges}} \sigma_z^{(i)} \sigma_z^{(j)}.$$

System is integrable, but can still scramble in the $\sigma_{\rm x}$ eigenbasis. Consider an initial state

$$|\Psi(0)\rangle = |i_1^x\rangle|i_2^x\rangle...|i_n^x\rangle.$$

Ising (2)

$$M = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

The time evolution operator is periodic with period $\pi |E|/|V|$. At time $\pi |E|/2|V|$, the state $|\Psi(t)\rangle$ is as entangled as it is going to get. Moreover

$$S(\rho_A) = \operatorname{rank}_{Z_2} M$$

where M is an |A| by $|A^c|$ matrix, with $M_{ij}=1$ if $i \in A$ is connected to $j \in A^c$, 0 otherwise.

Ising (3)

Math problem: minimize |E|/|V| subject to constraint that M be full rank for almost all subsystems.

Our solution: take a random graph of connectivity

$$\left\langle \frac{|E|}{|V|} \right\rangle = \langle \# \text{ neighbors} \rangle = \log n.$$

For these graphs, the states $|i_1^x\rangle|i_2^x\rangle...|i_n^x\rangle$ get scrambled within a time

$$t_* = \frac{\pi}{2} \log n.$$

A numerical cautionary tale

$$H = \frac{1}{n} \sum_{\alpha,\beta,i,j} J_{\alpha\beta}^{(ij)} \sigma_{\alpha}^{(i)} \sigma_{\beta}^{(j)}$$

A numerical cautionary tale

A numerical cautionary tale (2)

A numerical cautionary tale (3)

Take a completely nonlocal Hamiltonian

$$H=\frac{1}{n}\sum_{j,k}H_{jk}$$

Take a completely nonlocal Hamiltonian

$$H = \frac{1}{n} \sum_{j,k} H_{jk}$$

$$[A(t), B] = [A, B] + it[[H, A], B] - \frac{t^2}{2}[[H, [H, A]], B] + \dots$$

Take a completely nonlocal Hamiltonian

$$H = \frac{1}{n} \sum_{j,k} H_{jk}$$

$$||[A(t), B]|| \le ||[A, B]|| + ||t[[H, A], B]|| + \frac{t^2}{2}||[[H, [H, A]], B]|| + \dots$$

Take a completely nonlocal Hamiltonian

$$H = \frac{1}{n} \sum_{j,k} H_{jk}$$

$$||[A(t), B]|| \le ||[A, B]|| + ||t[[H, A], B]|| + \frac{t^2}{2}||[[H, [H, A]], B]|| + \dots$$
$$(|\sin(x)| \le |x| + |x^3/3!| + |x^5/5!| + \dots)$$

There's a better way!

$$[A(t), B] = [A, B] + \sum_{j=1}^{m} [A(t_{j+1}), B] - [A(t_j), B]$$

There's a better way!

$$||[A(t), B]|| \le ||[A, B]|| + \sum_{j=1}^{m} ||[A(t_{j+1}), B] - [A(t_j), B]||$$

There's a better way!

$$||[A(t), B]|| \le ||[A, B]|| + \sum_{j=1}^{m} ||[A(t_{j+1}), B] - [A(t_j), B]||$$

$$\implies \|[A(t), B]\| \le \|[A, B]\| + 2\|A\| \int_0^t ds \|[h(s), B]\|$$

where h is the part of H that doesn't commute with A.

There's a better way!

$$||[A(t), B]|| \le ||[A, B]|| + \sum_{j=1}^{m} ||[A(t_{j+1}), B] - [A(t_j), B]||$$

$$\implies \|[A(t), B]\| \le \|[A, B]\| + 2\|A\| \int_0^t ds \|[h(s), B]\|$$

where h is the part of H that doesn't commute with A. Similarly,

$$||[H_{jk}(s),B]|| \le ||[H_{jk},B]|| + 2||H_{jk}|| \int_0^s ds' ||[h'(s'),B]||$$

where h' is the part of H that doesn't commute with H_{jk} .

Lieb-Robinson (2)

Iterate this inequality to get a bound. Roughly, one gets a sum over paths through the graph, starting at the vertex of A and ending at the vertex of B, weighted by $(t/n)^{\ell}/\ell!$. The number of such paths is $n^{\ell-1}$, so the sum is

$$||[A(t), B]|| \le \sum_{\ell=1}^{\infty} \left(\frac{t}{n}\right)^{\ell} \frac{n^{\ell-1}}{\ell!} \le \frac{1}{n} \exp t.$$

So that

$$t_* \geq \log n$$
.

Scrambling and AdS/CFT

Polchinski, Susskind, Toumbas 1999. Probed *only* by nonlocal precursors of decreasing nonlocality. "Unscrambling".

Scrambling and AdS/CFT

Probed *only* by nonlocal precursors of increasing nonlocality. Radial causality \sim scrambling.

Scrambling and AdS/CFT (2)

- (Susskind, Witten 1998)
- Bousso, Leichenauer, Rosenhaus 2012
- ► Hubeny, Rangamani 2012
- Czech, Karczmarek, Nogueira, Van Raamsdonk 2012

Scrambling and AdS/CFT (2)

- ► (Susskind, Witten 1998)
- ▶ Bousso, Leichenauer, Rosenhaus 2012
- ► Hubeny, Rangamani 2012
- Czech, Karczmarek, Nogueira, Van Raamsdonk 2012

Scrambling and AdS/CFT (3)

These perturbations scramble ballistically, not diffusively!

Conclusions

Ising: simple systems can scramble certain states fast

Numerics: robust scrambling, but can't find log

L-R: even complete graphs have speed limits

AdS/CFT: "ballistic" scrambling \sim radial causality

Future?

- ► Find a real fast scrambler?
- Attack the matrix Hamiltonian directly?
- Relate this work to other approaches: Barbon/Magan hyperbolic diffusion, Asplund/Berenstein/Trancanelli numerical work, holographic thermalization.