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① Introduction

To generalize the AdS/CFT to holography in more general 
spacetimes, we need to better understand the basic mechanism 
of holography. 

A basic question:  Which region in the AdS does encode the 
`information in a certain region’ of the CFT ? 

[For recent proposals on closely related problems , see also Bousso-Leichenauer-

Rosenhaus , Czech-Karczmarek-Nogueira-Raamsdonk, Hubeny-Rangamani 12] 
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The entanglement entropy (EE) can measure the amount of      

effective information in A.

Define the reduced density matrix       for A  by

Finally, the entanglement entropy (EE)       is defined 

by                                                                 (von-Neumann entropy)

Consider the holographic entanglement entropy (HEE).



(2-1) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]
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Motivation of this proposal
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Comments

• A complete proof of HEE formula is still missing,  there has been 

many evidences and no counter examples.  

• If  backgrounds are time-dependent, we need to employ extremal

surfaces in the Lorentzian spacetime instead of minimal surfaces.

[Hubeny-Rangamani-TT 07]

• In the presence of black hole horizons, the minimal surfaces 

wraps the horizon as the subsystem A grows enough large.  

⇒ Reduced to the Bekenstein-Hawking entropy, consistently.
[Eternal BH as an entangled state, Maldecana 01]



Higher derivative corrections to HEE 

⇒ A precise formula was found for Lovelock gravities.
[Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11]      

Ex. Gauss-Bonnet Gravity   

[But for general higher derivative theories, this is hard !]  

⇒ However, Any HEE formula is not known in more general cases.  
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[A Partial List of Evidences]

 Area law follows straightforwardly [Ryu-TT 06]

 Agreements with analytical 2d CFT results for AdS3 [Ryu-TT 06]

 Holographic proof of strong subadditivity [Headrick-TT 07, Allais-Tonni  11]

Callan-He-Headrick 12]

 A proof of HEE for A=round spheres [Casini-Hueta-Myers 11] 

 Cadney-Linden-Winter inequality (monogamy) [Hayden-Headrick-Maloney 11]

 Consistency of 2d CFT results for disconnected subsystems               

[Calabrese-Cardy-Tonni 09]   with our holographic formula  [Headrick 10] 

 Agreements on the coefficients of log term in 4d CFT (~a+c)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-Schwimmer-Theisen 09,  

Dowker 10, Casini-Huerta, 10,  Myers-Sinha 10, Casini-Hueta-Myers 11] 



General Behavior of HEE [Ryu-TT 06]

divergence

 law Area

Conformal Anomaly (central charge)
2d CFT     c/3・log(l/a)
4d CFT     -4a・log(l/a)

A universal quantity which 
characterizes odd dim. CFT
⇒ Analogue of c-function 

[Myers-Sinha 10, Liu-Mezei 12,

Proof vial SSA ⇒Casini-Huerta 12]  

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-
Schwimmer-Theisen 09,  Dowker 10, Casini-Huerta, 10,  
Myers-Sinha 10, Casini-Hueta-Myers 11,…] 
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③ HEE and Black Holes

(3-1) Eternal BH (Mixed State)

A B

BBH BH

A

B



(3-2) BH Formation (Pure State)

Black hole formation in AdS ⇔ Thermalization in CFT
[See e.g. Chesler-Yaffe 08, Bhattacharyya-Minwalla 09,…]

An Entropy Puzzle  

(i) Von-Neumann entropy remains vanishing under a unitary 
evolutions of a pure state.

(ii) In the gravity dual, its holographic dual inevitably includes a 
black hole at late time and thus the entropy looks non-

vanishing !
Clearly,  (i) and (ii)  contradicts !



Resolution of this Puzzle via Entanglement Entropy
[Arrastia-Aparicio-Lopez 10, Ugajin-TT 10]

Upshot:  The non-vanishing entropy appears only  after coarse-

graining.  The von-Neumann entropy itself is always vanishing.

First, notice that the (thermal) entropy for the total system can be 

found from the entanglement entropy via the formula

This is indeed vanishing if we assume for the pure state: SA=SB. 

Instead, we can regard SA as the coarse-grained entropy.



Indeed, we can holographically show this as follows:

[Hubeny-Rangamani-TT 07]
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Time Evolutions of HEE under Quantum Quenches 

In 1+1 dim. CFTs, we expect a linear growth of EE after a quantum 

quench.  [Calabrese-Cardy 05] SA(t)-Sdiv

t
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Thermal entropy
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[Higher dim. CFTs:  Albash-Johnson 10, 
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④ Emergent Metric from Entanglement

(4-1) Entanglement and Emergent Metric 

In principle, we can obtain a metric from a CFT as follows:

a CFT state  ⇒ Information  (~EE) =  Minimal Areas ⇒ metric

One candidate of such frameworks is so called the entanglement 

renormalization (MERA) [Vidal 05 (for a review see 0912.1651)] as 

pointed out by [Swingle 09].   
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[cf.  Emergent gravity: Raamsdonk 09, Lee 09]

[Nozaki-Ryu-TT, work in progress]



(4-2) Emergent Metric in a (d+1) dim. Free Scalar Theory

Hamiltonian:

Ground state             :  

Moreover,  we introduce the `IR state’          which has no real 

space entanglement. 
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By including a class of excited states,  let us assume:

Note: This includes the time-evolution after quantum quenches.

The IR state satisfies 

The strength of quantum entanglement is measured by 

a `distance’ between          and           . 
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There is a natural metric which respects SU(1,1) symmetry of the 

Bogoliubov transf., which preserves 

We can parameterize as follows:

This leads to AdS3 metric: 

Moreover, we impose the identification 

In this way, we finally reach the AdS2 metric:

Note: This AdS2 is nothing related to the AdS of AdS/CFT.
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We can regard the vector                                  for various energy

scales k as a RG-flow of the state         .

Our claim:  we can define a measure of entanglement for the 

state           using the AdS2 metric:
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We argue that this is related to the entanglement entropy:

where the subsystem A is assumed to be the half of total system.

Compare this with the HEE: 

By identifying z=1/k , we obtain the correspondence:
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Example 1: The ground state of a massless free scalar

Example  2: The excited state  after a quantum quench
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Time dependent metric  from the Quantum Quench

t

Light cone

looks like a propagation of 
gravitational wave.

zz
gz

We can also confirm the linear growth of EE:  SA∝t.
This is consistent with the known CFT (2d) and HEE results 
(any dim.).
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(4-3) Relation to MERA and cMERA

MERA (Multiscale Entanglement Renormalization Ansatz):

An efficient variational ansatz to find CFT ground states have been 

developed recently.  [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT,  we add (dis)entanglers.
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Calculations of EE in 1+1 dim. MERA

A= an interval (length L)
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A conjectued relation to AdS/CFT [Swingle 09]

0s
1s

A
A

A

 Min[Area]

A


.        

,)(Metric
2

222

22

2

2

2

s

s

ezwhere

z

xddtdz
xddt

e
ds














2d
AdS

1d
CFT

A


Bonds]Min[#

?  Equivalent

)(
IR

ss 



Now, to make the connection to AdS/CFT clearer,  we would like 

to consider the MERA for quantum field theories. 

Continuous MERA (cMERA)
[Haegeman-Osborne-Verschelde-Verstraete 11]
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For a free scalar theory, the ground state corresponds to

For the excited states,            becomes time-dependent. 

One might be tempting to guess 

Indeed, our previous metric based on the SU(1,1) sym. can be 

regarded as a refinement of this naïve guess.
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④ Conclusions and Discussions

• HEE can be used as a probe of black hole formation, while 

the microscopic total entropy remains vanishing.

⇒ Analysis of time-dependent EE in higher dim. ? 

• We can construct an emergent metric via the quantum 
entanglement just from QFTs. We confirmed its linear growth 

after a quantum quench. 

⇒ How to calculate  gtt ?   Derive Einstein eq. ?

Free scalars → Higher spin gauge theories ?

Large N gauge theories ?                   

• EE is `something’ between the wave function and the metric.


