KITP conference, Black Holes and Information, 2012, May

Developments of
Holographic Entanglement Entropy

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP),
Kyoto University, the University of Kyoto



Contents

(D Introduction

(2 Holographic Entanglement Entropy (HEE)
@ HEE and Black Holes

@ Emergent Metric From Entanglement

(5 Conclusions



) Introduction

To generalize the AdS/CFT to holography in more general

spacetimes, we need to better understand the basic mechanism
of holography.

A basic question: Which region in the AdS does encode the
‘information in a certain region’ of the CFT ?

Region A in CFT,,, Iiegion X,in AdS,,,

[For recent proposals on closely related problems , see also Bousso-Leichenauer-
Rosenhaus , Czech-Karczmarek-Nogueira-Raamsdonk, Hubeny-Rangamani 12]



m) The entanglement entropy (EE) can measure the amount of
effective information in A.

Example: Spin Chain Hmr :]{A ®HB

4pooceccoco mm ooece woo

Define the reduced density matrix 24 for A by

Py =110, ,

Finally, the entanglement entropy (EE) S , is defined

by SA — —TI‘A P IOgPA .| (von-Neumann entropy)

® Consider the holographic entanglement entropy (HEE).



(2 Holographic Entanglement Entropy (HEE)
(2-1) Holographic Entanglement Entropy Formula

/ [Ryu-TT 06]
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Motivation of this proposal

An observer

CFT,q e O
Dual ? :” 7/Af N

AdSg,, =)
}/‘

Region A in CFT,,

Iiegion X,in AdS,,,

The information in A
is encoded here. f Bousso bound



Comments

A complete proof of HEE formula is still missing, there has been
many evidences and no counter examples.

* If backgrounds are time-dependent, we need to employ extremal
surfaces in the Lorentzian spacetime instead of minimal surfaces.

[Hubeny-Rangamani-TT 07]

* Inthe presence of black hole horizons, the minimal surfaces
wraps the horizon as the subsystem A grows enough large.
= Reduced to the Bekenstein-Hawking entropy, consistently.

[Eternal BH as an entangled state, Maldecana 01]



Higher derivative corrections to HEE

= A precise formula was found for Lovelock gravities.

[Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11]

Ex. Gauss-Bonnet Gravity
d+2 2
S ac :_16éN de \/E[R_ZA_FJ“RAdS Lgg |

Les=R,,, R*77 —4R R" +R”.

GB HVpOo
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[But for general higher derivative theories, this is hard !]

= However, Any HEE formula is not known in more general cases.



[A Partial List of Evidences]

» Area law follows straightforwardly [ryu-TT 06]
» Agreements with analytical 2d CFT results for AdS3 [rRyu-TT 06]

» Holographic proof of strong subadditivity [Headrick-TT 07, Allais-Tonni 11]
Callan-He-Headrick 12]

» A proof of HEE for A=round spheres [Casini-Hueta-Myers 11]

» Cadney-Linden-Winter inequality (monogamy) [Hayden-Headrick-Maloney 11]

» Consistency of 2d CFT results for disconnected subsystems
[Calabrese-Cardy-Tonni 09] With our holographic formula [Headrick 10]

» Agreements on the coefficients of log term in 4d CFT (~a+c)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-Schwimmer-Theisen 09,
Dowker 10, Casini-Huerta, 10, Myers-Sinha 10, Casini-Hueta-Myers 11]



General Behavior of HEE [ryu-1T06]

¢ _ 742 R i [£]d1+ (ijd3+,,. ‘Il
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a divergence

e

A universal quantity which Conformal Anomaly (central charge)
characterizes odd dim. CFT 2d CFT  c¢/3+log(l/a)

= Analogue of c-function 4d CFT -4a-log(l/a)

[Myers-Sinha 10, Liu-Mezei 12, [Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-
Proof vial SSA =Casini-Huerta 12] Schwimmer-Theisen 09, Dowker 10, Casini-Huerta, 10,
Myers-Sinha 10, Casini-Hueta-Myers 11,...]



@ HEE and Black Holes

(3-1) Eternal BH (Mixed State)

A
A»

Note: §,#S, duetothehorizon.

< mixedstate



(3-2) BH Formation (Pure State)

Black hole formation in AdS < Thermalization in CFT
[See e.g. Chesler-Yaffe 08, Bhattacharyya-Minwalla 09,...]

An Entropy Puzzle

(i) Von-Neumann entropy remains vanishing under a unitary
evolutions of a pure state.

ptot(t) = U(t,fo )‘ LPo ><LPO ‘U(tato)_l
— S(I) =—1r ptot(t) log ptot(U — S(to)-

(ii) Inthe gravity dual, its holographic dual inevitably includes a
black hole at late time and thus the entropy looks non-
vanishing !
Clearly, (i) and (ii) contradicts !



Resolution of this Puzzle via Entanglement Entropy
[Arrastia-Aparicio-Lopez 10, Ugajin-TT 10]

Upshot: The non-vanishing entropy appears only after coarse-
graining. The von-Neumann entropy itself is always vanishing.

First, notice that the (thermal) entropy for the total system can be
found from the entanglement entropy via the formula

Stor = hm(SA _SB)'

|B|—>0

This is indeed vanishing if we assume for the pure state: SA=SB.

mp Instead, we can regard SA as the coarse-grained entropy.



Indeed, we can holographically show this as follows:

Time |I

A

[Hubeny-Rangamani-TT 07]

A

—

B

Black hole formation
in global AdS,_, Continuous deformation



Time Evolutions of HEE under Quantum Quenches

In 1+1 dim. CFTs, we expect a linear growth of EE after a quantum

qguench. [Calabrese-Cardy 05] S : |
A(t)-Sdiv : ~ —
N Causalty = At=

m(t)f‘ At 2
— e
Quantum
‘ t quench
—_ - l/ Thermal entropy
St
B A B t*
>

Evolutions of HEE in Vaidya BH ds® = —(7> —m(v))dv’ + 2drdv + r*dx’
L({’t) [CFT2: Arrastia-Aparicio-Lopez 10]

[Higher dim. CFTs: Albash-Johnson 10,
Balasubramanian-Bernamonti-de Boer-
Copland-Craps- Keski-Vakkuri-Muller-
Schafer-Shigemori-Staessens 10, 11, ....]




@ Emergent Metric from Entanglement
[Nozaki-Ryu-TT, work in progress]

(4-1) Entanglement and Emergent Metric

In principle, we can obtain a metric from a CFT as follows:

a CFT state = Information (“EE) = Minimal Areas = metric

) S . Area( ¥ ,) g,

One candidate of such frameworks is so called the entanglement
renormalization (MERA) [vidal 05 (for a review see 0912.1651)] as

pointed out by [Swingle 09].  [cf. Emergent gravity: Raamsdonk 09, Lee 09]



(4-2) Emergent Metric in a (d+1) dim. Free Scalar Theory
Hamiltonian: H = %jdk Nz () z (k) + (k> + m*)d(k)p(-k)].

Ground state ‘\P> : ak‘\P> = 0.

Moreover, we introduce the 'IR state’ Q> which has no real

space entanglement.

a,|Q) =0, a_ =M g(x) + \/iﬁﬂ(x),
e, |Q)=TT|o) al = N¢(X)—ﬁﬂ(x).

= S, =0.



By including a class of excited states, let us assume:

(A.a, +B,a’)|¥)=0, (A |° -8B, |’=1).

Note: This includes the time-evolution after quantum quenches.

The IR state satisfies (o, a, + ,Bka_*k)‘Q> =0,

A D

The strength of quantum entanglement is measured by
a “distance’ between‘\P> and ‘Q>



There is a natural metric which respects SU(1,1) symmetry of the
Bogoliubov transt., which preserves [a, ,a ] = 5%k - P).

We can parameterize as follows:

_ ib, _al
. =cosh a, -e"™*, B, =sinh a, -e

ic,

A
This leads to AdS3 metric:

ds® =da’ - (cosh a)’db? + (sinh a)®dc”.

Moreover, we impose the identification (A, ,B, ) ~ (e ' A, e ' B,).
In this way, we finally reach the AdS2 metric:

1
ds® =da’ + Z(sinh 2a)°(db — dc)”.

Note: This AdS2 is nothing related to the AdS of AdS/CFT.



We can regard the vector (A, ,B, ) € AdS , for various energy
scales k as a RG-flow of the state‘ \P> .

AdS?2 k
o)

k=M =

I
(@

(A By)

Our claim: we can define a measure of entanglement for the
state “P> using the AdS2 metric:

M ~ ~
Length = jo dk .\/| (0. A,,0,B.)|

(A, B) is rotated into (,Z\, §) so that («, ) goes to (1,0).



We argue that this is related to the entanglement entropy:

M ~ ~
S, = LK (O (0,4, 0,8, F

DOS

where the subsystem A is assumed to be the half of total system.

Compare this with the HEE:

LR dz
S:OI o Ld—l — /gz .
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By identifying z=1/k , we obtain the correspondence:

@mkz\/|(akik,ak§k)|2.



Example 1: The ground state of a massless free scalar

— = 1
gzz x kz\/| (akAk’akBk)|2 :Z.

dz® —dt® + (dxX)°

= AdS ., metric : ds°
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Example 2: The excited state after a quantum quench

5 5 1/4 2 1/4
m(t) A =— ” +| — . e,
mO 2 K K®+mO

1/4 1/4
—> 5 L k?+mo° k ? it
< Kk 2 k?+mo? |




Time dependent metric from the Quantum Quench

Light cone

looks like a propagation of
gravitational wave.

We can also confirm the linear growth of EE: SAct.
This is consistent with the known CFT (2d) and HEE results
(any dim.).



(4-3) Relation to MERA and cMERA

MERA (Multiscale Entanglement Renormalization Ansatz):
An efficient variational ansatz to find CFT ground states have been

developed recently. [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT, we add (dis)entanglers.
Unitary transf.

between 2 spins



Calculations of EE in 1+1 dim. MERA

S, o« Min [# Bonds ] log L

— agrees with 2d CFTs.



A conjectued relation to AdS/CFT [swingle 09]
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S =~ (= 5,)
17 -
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Now, to make the connection to AdS/CFT clearer, we would like
to consider the MERA for quantum field theories.

Continuous MERA (cMERA)

[Haegeman-Osborne-Verschelde-Verstraete 11]

— —
True ground state IR state
(highly entangled) (no entangleme nt)

) :P-exp(—ij:lesK(s))- Q) |

S

— Real space renormaliz ation flow : length scale ~¢-e .

Our Conjecture

d+1 dim.cMERA = gravity on AdS ,,, z=¢-e .




For a free scalar theory, the ground state corresponds to
. i
K (s)=—[dk 7 (s)T(ke ™ /M )aja”, + (hc)]
2
where T'(X) Is a cut off function : I'(x) =60(1- | x |).

eZS

;((s)zl- ” , (for m=0, y(s) =1/2))

2 e +m’IM?

For the excited states, y (s) becomes time-dependent.
One might be tempting to guess

e25 ~
dSéravity :gssd52+ 2 'dxz_gttdt2 » VgSS OC|Z(S)| f)

E

Indeed, our previous metric based on the SU(1,1) sym. can be
regarded as a refinement of this naive guess.



(@ Conclusions and Discussions

HEE can be used as a probe of black hole formation, while
the microscopic total entropy remains vanishing.
= Analysis of time-dependent EE in higher dim. ?

* We can construct an emergent metric via the quantum
entanglement just from QFTs. We confirmed its linear growth

after a quantum quench.
= How to calculate gtt ? Derive Einstein eq. ?

Free scalars - Higher spin gauge theories ?
Large N gauge theories ?

 EEis something’ between the wave function and the metric.



