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The Issue

Find, classify and understand regular, horizonless solutions with the same 
asymptotic structure as a given black hole or black ring  

⇔  Microstate Geometries (definition)

•  BPS/supersymmetric •  Extremal, non-BPS •  Non-extremal

Motivation

•  What is new about stringy black holes? Failure of uniqueness ... 

•  Semi-classical description of families black hole microstates

★  How many microstates can be captured by such geometries

★  How densely distributed are these microstates?  Good enough 
    for a semi-classical description of black-hole thermodynamics?

★  What sectors of black-hole CFT are captured by diverse microstate
    geometries?



This Talk:

Context: Highlights of microstate geometries thus far... 

★ Why we believe the superstratum exists

★ Conjecture: there is a completely new class of smooth BPS solutions 
   to supergravity, called Superstrata with   

✦ Fluctuating profiles that depend upon functions of two variables. 
✦ Carry three electric charges and two independent magnetic dipole charges.

✦ Constructive argument/algorithm 

★ How far have we got with the explicit construction

★ Why important?

✦ Superstrata would represent, for the three-charge BPS black hole, 
   precisely what the two-charge supertube represents for the two-charge 
   BPS black hole:  Its own special solitonic bound state with much larger families
   of microstate geometries

✦ Two-charge microstate geometries characterized by supertubes which 
   carry two electric and one magnetic dipole charge and depend on functions 
   of one variable



Three-charge BPS black holes in five dimensions 

Horizonless, completely regular bubbled 
geometries that cap-off at the horizon scale 
and have the same quantum numbers as BPS 
black holes with non-trivial, macroscopic horizons

★ Multi-centered geometries: Coulomb branch of dual field theory. Denef et al.   

Analysis of the energy gap of excitations of the deepest allowed deep/
scaling microstate  geometries yields Eexcitations  ~  Egap; CFT  ~  (Ccft)-1

⇒  Representative of the “typical sector” of CFT

★ Depth of throat is limited by quantization of moduli

★ AdS throat ⇒ holography can establish dual CFT states 

Bena,  Wang and Warner,  arXiv:hep-th/0608217

 de Boer,  El-Showk, Messamah,  Van den Bleeken,  arXiv:0807.4556

★  Bubbles can be made much larger than String/Planck scale   
⇒   Supergravity approximation is valid

★  Branes replaced by cohomological fluxes on non-trivial cycles (bubbles)



Fluctuating Microstate Geometries
Bubbled geometries in five dimensions are completely rigid on internal space  
(T5 in IIB)    ⇒   Still rather course sampling of microstate structure. 

Need to consider “fluctuating” microstate geometries that depend upon 
compactified internal dimensions ... (v)

★  Supertubes:  Smooth BPS solutions that
    depend upon functions of one variable, F(v).

Semi-classical quantization   ⇒   S ~ Q

★  Simple fluctuating bubbled geometries 
    described functions of one variable
    Semi-classical quantization   ⇒   S ~ Q

v

★  Entropy enhancement 
    Fluctuating supertubes and bubbles in deep
    scaling geometry become much floppier due
    to strong dipole-dipole interactions
    Semi-classical quantization   ⇒   S ~ Q5/4

⇒  BPS solutions in six dimensions (or more)



★  Singularity resolved and capped off at (macroscopic) horizon scale

So far... 

★  Solutions sample typical sector of underlying CFT

★  Fluctuating microstate geometries sample vast numbers of states
    in CFT, and not just the Coulomb branch states   S ~ Q5/4

Can one do more and better for the three charge system?

So far we have really only used the degrees of freedom motivated by 
supertubes:  Functions of one variable F(v).

Supertubes lie at the heart of Mathur’s proposal for the two-charge system. 
Supertubes carry two charges and one magnetic dipole charge.   S ~ Q .

★ Fluctuating microstate geometries are based on (non-perturbative) solitons

Superstrata:
 de Boer and Shigemori  arXiv:1004.2521Implement a doubled supertube transition.



Stacks of D1-branes and D5-branes are compatible (½)2 BPS objects
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D1-D5-P configuration  ⇒   1⁄8 BPS objects;  4 supersymmetries

+ momentum charge, P ,  compatible (½)3 BPS objects

D-Branes, Charges and Supersymmetry
Simple stacks of Dp-branes are ½ BPS objects

ΠD1 � = ΠD5 � = ΠP � = 0
½ ½ ½× × =  1⁄8 
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The Original Supertube Mateos and Townsend,  hep-th/0103030

Start with D0 + F1 (compatible) charges

✦  Spin up with angular momentum, J,  
    in θ direction

The supertube transition:
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✦ Dissolve D0 and F1 charge in the D2 brane 

✦ Start with D2 brane along (z, θ) where θ defines a closed curve  
⇒  d2 dipole charge + arbitrary shape
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Projector :  

D2 brane projector:  

Dissolve D0 + F1 charge and spin it up. Projector becomes:
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Supertube projector, depending upon 1 parameter, α: 

The supersymmetry projectors

Constraints
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⇒ Preserves 8 supersymmetries globally, independent of the direction, θ.

Preserves the same supersymmetries as the original D0 + F1 configuration



Simple Picture:  Tilting and Boosting an M2 Brane
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Tilt induces d2 charge and Boost induces D0, J: 

Actually M2 brane

16 supersymmetries

•  Still has 16 supersymmetries

•  All charges fixed by QM2 and tilt angle
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•  Projector induced by tilt and boost
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✦  Carry two electric charges and one dipole charge + angular momentum,  J

✦  Locally ½ BPS objects:  16 supersymmetries (locally primitive) 
   depending on θ direction

✦  Globally ¼ BPS objects:  8 supersymmetries same supersymmetries 
as original charge configuration 

✦  Configuration can be given an arbitrary shape parametrized by θ



Generic duality frames
One can dualize the supertube construction to arbitrary duality frames.
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 ⇒   The locus of the supertube 
 often gains a dimension (θ)  
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The exception:  When one charge is a momentum charge.  

 ⇒   Supertube transition is achieved by tilting and boosting
⇒   Supertube transition does not add to the dimension of the configuration
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⇒  Metric is singular near D-branes

Supertube transition:  Freely choosable profile, �F(v)
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The softening to a line singularity makes this solution completely smooth:
A microstate geometry ... 

An Important Example: the D1-D5 supertube in six dimensions
D1-D5 branes + KKM charge + angular momentum �
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�
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A Completely regular six-dimensional 
geometry: Regular for all supertube profiles

�F(v)

!!

�F(v)

R
4

Maldacena, Maoz, hep-th/0012025;  Lunin, Mathur, hep-th/0202072; Lunin, 
Maldacena, Maoz  hep-th/0212210
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Transverse to tube:  Metric is spatial R4
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Pure D1-D5 source

Singular Geometry

Smeared D1-D5 source + KKM charge

Regularity



Double Bubbling the D1-D5-P system 

First puff-up  ⇔  first dipole charge:   Tilt and boost D1 and D5 branes in parallel

Globally/profile arbitrary, F(θ) 
Locally/profile independent of θ
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Bena, de Boer, Shigemori and Warner, 1107.2650



Second puff-up  ⇔  second dipole charge:  The Superstratum
So far: �ΠDX = cosα
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Locally a tilted D1-D5 system with some profile in θ:
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� �ΠD1 + sinβ
�
sinβ 1l− cosβ Γẑψ σ1
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                                     ⇒   a  co-dimension-3  object
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Two parameters, (α, β)  ⇔  two independent dipole charges



Arbitrary profile as a function of (θ, ψ )

Profile independent of (θ, ψ ) 
Supersymmetries

16
8Profile depends on θ but not ψ  (or on ψ but not θ )
4

The Double Bubbled 3-Charge,  2-Dipole Charge Superstratum
�Π = cosβ

�
cosβ 1l+ sinβ Γẑψ σ1

� �ΠD1 + sinβ
�
sinβ 1l− cosβ Γẑψ σ1

� �ΠD5

= A1 ΠD1 + A2 ΠD5 + A3 ΠP

• Three electric charges QD1, QD5, QP

• Two independent dipole charges parametrized by  (α, β)
• The supertube transitions allow independent  profiles in (θ, ψ )

•  Generic superstratum is locally primitive (16 supersymmetries).... 
        but globally has same supersymmetries as the original D1-D5-P system
• The superstratum has a two-dimensional set of shape modes and has 

co-dimension 3 in six (ten) dimensions .... 

• The superstratum should be a completely smooth BPS solution: 
  Microstate geometries that depends upon functions of two variables.

Can you construct it as a smooth supergravity solution? 



BPS Solutions in Six Dimensions

Study minimal, (N=1) supergravity coupled to one anti-self-dual tensor multiplet.

Bosonic field content ( gμν , B+μν) +  ( B-μν , ϕ)    ⇔   ( gμν , Bμν , ϕ) 

Trivial dimensional reduction to five dimensions yields N=2 supergravity coupled 
to two vector multiplets

Bosonic field content (five dimensions)   gμν , AKμ , Xa  K =1,2,3;   a =1,2

This six-dimensional theory is precisely the one that underpins the study of three-
charge black holes in five dimensions ... 

BPS equations derived and studied in great detail in:  
Gutowski, Martelli and Reall hep-th/0306235
Cariglia, Mac Conamhna hep-th/0402055

Huge surprise:  Bena,  Giusto,  Shigemori, Warner   arXiv:1110.2781

Once the base geometry is fixed, the BPS equations are linear.
✦  Much easier to solve
✦  Superposition solutions  ⇒ phase space structure much simpler
✦  Highly relevant to AdS3 × S3 holography

Six-dimensions:  IIB compactified on T4 = other four dimensions of the D5  



The Elements of BPS Solutions

ds2 = 2 (Z1Z2)
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The metric:
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Dilaton:

Building blocks:     Base metric, ds42; (fibration) vector field,  β; 
Potential functions Z1, Z2, Z3;     Magnetic 2-forms Θ1, Θ2;  
Angular momentum vector, ω.



The geometric elements

The base geometry, ds42 , is required to be “almost hyper-Kähler”

Anti-self-dual 2-forms,  J(A), on four-dimensional base, satisfying:

J (A)m
pJ

(B)p
n = �ABC J (C)m

n − δAB δmn

d̃J (A) = ∂v
�
β ∧ J (A))

where    is the exterior derivative on the base, ds42 , (i.e. in     alone)�yd̃

The vector field, β, that defines the v-fibration is required to satisfy:

Dβ = ∗4 Dβ D ≡ d̃ − β ∧ ∂v

N.B.  These are the only non-linear parts of the system and either 
define, or are defined entirely in terms of, the base geometry

Obvious solution: ds42 and β are v-independent and ds42 is hyper-Kähler. 

The equations (as functions of v and    ) for the potential functions Z1, Z2, Z3, 
the magnetic 2-forms Θ1, Θ2 and the angular momentum vector, ω, are linear!

�y



First step to the superstratum: Superthreads

The first puff-up:   Give the D1-D5-P system an arbitrary profile,        ,   
in six dimensions adding  d1-d5 dipoles + angular momentum, J.

�F(v)

Double bubbling is a constructive prescription.

Angular Momentum, J
z F(z)

P
D1

D5

P θ

Completely new three-charge, two-dipole charge BPS solution with arbitrary profile.

Solved in R4 base. Bena,  Giusto,  Shigemori, Warner   arXiv:1110.2781

Superthreads have highly non-trivial and non-linear interactions:

✦  Magnetic field and electric fields source each other
✦  Magnetic field + electric fields source angular momenta

Multi-superthreads have a very rich structure ... 

Layered linear system:  Linear solutions ➞ Non-linear sources for next linear layer



One can take the three-charge multiple superthread solution and smear into a 
supersheet that depends upon functions of two variables.

Multiple, independent 
superthreads

Supersheet

�F (σ, v)�F (p)(v)

Supersheet: New three-charge, two-dipole charge BPS solutions that depends upon 
functions of two variables.  Details:   See poster by Niehoff and Vasilakis

Niehoff, Vasilakis and Warner   arXiv:1203.1348

Multiple, independent, interacting superthreads:  
New three-charge, two-dipole charge BPS solutions that depends upon multiple, 
independent functions,           , of one variable �F (p)(v)

Multiple, independent, 
interacting superthread 
solution is essential to 
getting a supersheet 
described by generic 
functions of two variables

The Next Step Multi-Superthreads and Supersheets



Conclusions

• Solitonic bound-state with three charges, two independent dipole charges 

•  Smooth in D1-D5-P duality frame

 ⇒  New, extremely rich families of microstate geometries

•  Many new multicomponent BPS solutions; Superthreads and supersheets

•  BPS Equations are linear six dimensions

There is a very important class of new BPS solutions called superstrata

• 4 supersymmetries in general; 16 supersymmetries locally. 

Route to construction: Six-dimensional N=1 supergravity

•  Arbitrary shapes as functions of two variables

✦  Much easier to solve;  superposition ⇒ phase space structure

•  Superstratum requires supersheets + KKM.   

Dβ = ∗4 Dβ D ≡ d̃ − β ∧ ∂v, in general?Solve

The classification of microstate geometries has made remarkable progress


