Superthreads and Superstrata:

 New BPS Solutions in Six Dimensions

Nick Warner

Black Holes and Information, May 24th, 2012

Based upon work with

The Issue

Find, classify and understand regular, horizonless solutions with the same asymptotic structure as a given black hole or black ring \Leftrightarrow Microstate Geometries (definition)

- BPS/supersymmetric • Extremal, non-BPS • Non-extremal

Motivation

- What is new about stringy black holes? Failure of uniqueness ...
- Semi-classical description of families black hole microstates
* What sectors of black-hole CFT are captured by diverse microstate geometries?
* How many microstates can be captured by such geometries
« How densely distributed are these microstates? Good enough for a semi-classical description of black-hole thermodynamics?

This Talk:

ฝ Conjecture: there is a completely new class of smooth BPS solutions to supergravity, called Superstrata with

- Fluctuating profiles that depend upon functions of two variables.
+ Carry three electric charges and two independent magnetic dipole charges.
* Why important?
- Two-charge microstate geometries characterized by supertubes which carry two electric and one magnetic dipole charge and depend on functions of one variable
- Superstrata would represent, for the three-charge BPS black hole, precisely what the two-charge supertube represents for the two-charge BPS black hole: Its own special solitonic bound state with much larger families of microstate geometries
* Why we believe the superstratum exists
+Constructive argument/algorithm
* How far have we got with the explicit construction

Context: Highlights of microstate geometries thus far...

Three-charge BPS black holes in five dimensions

Horizonless, completely regular bubbled geometries that cap-off at the horizon scale and have the same quantum numbers as BPS black holes with non-trivial, macroscopic horizons

* Branes replaced by cohomological fluxes on non-trivial cycles (bubbles)
* Bubbles can be made much larger than String/Planck scale \Rightarrow Supergravity approximation is valid
\star AdS throat \Rightarrow holography can establish dual CFT states
« Multi-centered geometries: Coulomb branch of dual field theory. Denef et al.
* Depth of throat is limited by quantization of moduli

Analysis of the energy gap of excitations of the deepest allowed deep/ scaling microstate geometries yields $E_{\text {excitations }} \sim E_{\text {gap; }}$ CFT $\sim\left(C_{c f t}\right)^{-1}$
\Rightarrow Representative of the "typical sector" of CFT
Bena, Wang and Warner, arXiv:hep-th/06082I7
de Boer, El-Showk, Messamah, Van den Bleeken, arXiv:0807.4556

Fluctuating Microstate Geometries

Bubbled geometries in five dimensions are completely rigid on internal space (T^{5} in IIB) \Rightarrow Still rather course sampling of microstate structure.
Need to consider "fluctuating" microstate geometries that depend upon compactified internal dimensions ... (v)
\Rightarrow BPS solutions in six dimensions (or more)

* Supertubes: Smooth BPS solutions that depend upon functions of one variable, $\overrightarrow{\boldsymbol{F}}(\mathrm{V})$. Semi-classical quantization $\Rightarrow \mathbf{S} \sim \mathbf{Q}$
* Simple fluctuating bubbled geometries described functions of one variable Semi-classical quantization $\Rightarrow \mathbf{S} \sim \mathbf{Q}$
* Entropy enhancement

Fluctuating supertubes and bubbles in deep scaling geometry become much floppier due to strong dipole-dipole interactions Semi-classical quantization $\Rightarrow \mathbf{S} \sim \mathbf{Q}^{5 / 4}$

So far...

* Singularity resolved and capped off at (macroscopic) horizon scale
* Solutions sample typical sector of underlying CFT
* Fluctuating microstate geometries sample vast numbers of states in CFT, and not just the Coulomb branch states $\mathbf{S} \sim \mathbf{Q}^{5 / 4}$
\star Fluctuating microstate geometries are based on (non-perturbative) solitons

So far we have really only used the degrees of freedom motivated by supertubes: Functions of one variable $F(v)$.

Supertubes lie at the heart of Mathur's proposal for the two-charge system. Supertubes carry two charges and one magnetic dipole charge. $\mathbf{S} \sim \mathbf{Q}$.

Can one do more and better for the three charge system?
Superstrata:
Implement a doubled supertube transition.

D-Branes, Charges and Supersymmetry

Simple stacks of Dp-branes are $1 / 2$ BPS objects
Stacks of D1-branes and D5-branes are compatible ($1 / 2)^{2}$ BPS objects + momentum charge, P , compatible $(1 / 2)^{3} \mathrm{BPS}$ objects

$$
\begin{aligned}
& \Pi_{D 1}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z} \sigma_{1}\right) \\
& \Pi_{D 5}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z 6789} \sigma_{1}\right) \\
& \Pi_{P}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z}\right) \\
& \Pi_{D 1} \epsilon=\Pi_{D 5} \epsilon=\Pi_{P} \epsilon=0 \\
& 1 / 2 \times \quad 1 / 2 \quad \times \quad 1 / 2=1 / 8
\end{aligned}
$$

Compatible projectors:

$$
\left[\Gamma^{0 z 6789} \sigma_{1}, \Gamma^{0 z} \sigma_{1}\right]=\left[\Gamma^{0 z 6789} \sigma_{1}, \Gamma^{0 z}\right]=\left[\Gamma^{0 z} \sigma_{1}, \Gamma^{0 z}\right]=0
$$

D1-D5-P configuration $\Rightarrow 1 / 8$ BPS objects; 4 supersymmetries

The Original Supertube

Start with D0 + F1 (compatible) charges

$$
\begin{aligned}
\Pi_{D 0} & =\frac{1}{2}\left(\mathbb{1}+\Gamma^{0} i \sigma_{2}\right) \\
\Pi_{F 1} & =\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z} \sigma_{3}\right) \\
\Rightarrow \frac{1}{2} & \times \frac{1}{2} \times 32=8 \text { supersymmetries }
\end{aligned}
$$

The supertube transition:

- Start with D2 brane along (z, θ) where θ defines a closed curve

$$
\Rightarrow \text { d2 dipole charge + arbitrary shape }
$$

- Dissolve D0 and FI charge in the D2 brane
- Spin up with angular momentum, J, in θ direction

$$
\binom{D 0(0 z)}{F 1(z)} \rightarrow\binom{d 2(0 \theta)}{J(\theta)}
$$

The supersymmetry projectors

D2 brane projector: $\quad \Pi_{D 2}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z \theta} \sigma_{1}\right)$
Dissolve D0 + F1 charge and spin it up. Projector becomes:

$$
\widehat{\Pi}_{D 2}=\frac{1}{2}(\mathbb{1}+\underbrace{v_{1} \Gamma^{0 z \theta}}_{\mathbf{d} 2} \sigma_{1}+\underbrace{v_{2} \Gamma^{0} i \sigma_{2}}_{\mathbf{D 0}}+\underbrace{v_{3} \Gamma^{0 z} \sigma_{3}}_{\mathbf{F} 1}+\underbrace{v_{4} \Gamma^{0 \theta}}_{\mathrm{J}})
$$

Constraints

$$
\begin{aligned}
& \text { Projector : } \sum v_{i}^{2}=1 \\
& \text { Supersymmetry } \Rightarrow \mathbf{Q}_{\mathbf{F} 1} \mathbf{Q}_{\mathbf{D} 0}=\mathbf{J} \mathbf{q}_{\mathbf{d} 2} \Rightarrow \quad v_{1} v_{4}=v_{2} v_{3} \\
& \widehat{\Pi}_{D 2}=\frac{1}{2}\left(\mathbb{1}+\cos \alpha \cos \beta \Gamma^{0 z \theta} \sigma_{1}+\sin \alpha \cos \beta \Gamma^{0} i \sigma_{2}+\cos \alpha \sin \beta \Gamma^{0 z} \sigma_{3}+\sin \alpha \sin \beta \Gamma^{0 \theta}\right)
\end{aligned}
$$

Preserves same supersymmetries as D0 + F1 charges:

$$
\widehat{\Pi}_{D 2}=a \Pi_{D 0}+b \Pi_{F 1} \quad \Leftrightarrow \quad \beta=\frac{\pi}{2}-\alpha
$$

Supertube projector, depending upon 1 parameter, α :

$$
\widehat{\Pi}_{D 2}=\frac{1}{2}\left(\mathbb{1}+\cos ^{2} \alpha \Gamma^{0 z} \sigma_{3}+\sin ^{2} \alpha \Gamma^{0} i \sigma_{2}+\sin \alpha \cos \alpha\left(\Gamma^{0 z \theta} \sigma_{1}+\Gamma^{0 \theta}\right)\right)
$$

Important Identities:

$$
\widehat{\Pi}_{D 2}=\frac{1}{2}\left(\mathbb{1}+\cos ^{2} \alpha \Gamma^{0 z} \sigma_{3}+\sin ^{2} \alpha \Gamma^{0} i \sigma_{2}+\sin \alpha \cos \alpha\left(\Gamma^{0 z \theta} \sigma_{1}+\Gamma^{0 \theta}\right)\right)
$$

(i) $\widehat{\Pi}_{D 2}=\frac{1}{2}(\mathbb{1}+\mathbb{P}), \quad \mathbb{P} \equiv \Gamma^{0 z}\left(\cos \alpha \sigma_{3}+\sin \alpha \Gamma^{z \theta}\right)\left(\cos \alpha \mathbb{1}+\sin \alpha \Gamma^{\theta} i \sigma_{2}\right)$
$\Rightarrow \quad \mathbb{P}^{2}=\mathbb{1}, \quad \operatorname{Tr}(\mathbb{P})=0$
$\Rightarrow \quad$ Preserves 16 supersymmetries locally
Supersymmetries depend upon direction, θ.

(ii) $\widehat{\Pi}_{D 2}=\cos \alpha\left(\cos \alpha \mathbb{1}-\sin \alpha \Gamma^{z \theta} \sigma_{3}\right) \Pi_{F 1}+\sin \alpha\left(\sin \alpha \mathbb{1}+\cos \alpha \Gamma^{z \theta} \sigma_{3}\right) \Pi_{D 0}$

$$
\Pi_{F 1}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0 z} \sigma_{3}\right) \quad \Pi_{D 0}=\frac{1}{2}\left(\mathbb{1}+\Gamma^{0} i \sigma_{2}\right)
$$

\Rightarrow Preserves 8 supersymmetries globally, independent of the direction, θ.
Preserves the same supersymmetries as the original D0 + F1 configuration

Simple Picture: Tilting and Boosting an M2 Brane

F1

Tilt induces d2 charge and Boost induces D0, J:

- All charges fixed by $\mathbf{Q}_{\mathrm{M} 2}$ and tilt angle
- Still has 16 supersymmetries
- Projector induced by tilt and boost

$$
\widehat{\Pi}_{D 2}=\frac{1}{2}\left(\mathbb{1}+\cos ^{2} \alpha \Gamma^{0 z} \sigma_{3}+\sin ^{2} \alpha \Gamma^{0} i \sigma_{2}+\sin \alpha \cos \alpha\left(\Gamma^{0 z \theta} \sigma_{1}+\Gamma^{0 \theta}\right)\right)
$$

Key points

$$
\binom{D 0}{F 1(z)} \rightarrow\binom{d 2(z \theta)}{J(\theta)}
$$

- Carry two electric charges and one dipole charge + angular momentum, J
- Configuration can be given an arbitrary shape parametrized by θ
+ Locally $1 / 2$ BPS objects: 16 supersymmetries (Iocally primitive) depending on θ direction
+ Globally 1/4 BPS objects: 8 supersymmetries same supersymmetries as original charge configuration

Generic duality frames

One can dualize the supertube construction to arbitrary duality frames.
$\binom{Q_{1}}{Q_{2}} \rightarrow\binom{d_{X}(\theta)}{J(\theta)} \quad$ Configuration extends and rotates along θ
The supertube transition extends the configuration in an extra direction
\Rightarrow The locus of the supertube often gains a dimension (θ)

But not always ...

The exception: When one charge is a momentum charge.
\Rightarrow Supertube transition is achieved by tilting and boosting
\Rightarrow Supertube transition does not add to the dimension of the configuration

An Important Example: the D1-D5 supertube in six dimensions

D1-D5 branes + KKM charge + angular momentum

$d s_{6}^{2}=\left(H_{1} H_{5}\right)^{-\frac{1}{2}}\left[-(d t-\vec{A} \cdot d \vec{y})^{2}+(d z+\vec{B} \cdot \overrightarrow{d y})^{2}\right]+\left(H_{1} H_{5}\right)^{\frac{1}{2}} d \vec{y} \cdot d \vec{y}$
Original charge distribution $\quad H_{1}=1+\frac{Q_{1}}{r^{2}} \quad H_{5}=1+\frac{Q_{5}}{r^{2}}$
\Rightarrow Metric is singular near D-branes
Supertube transition: Freely choosable profile, $\vec{F}(v)$

$$
H_{1}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{d v}{|\vec{x}-\vec{F}(v)|^{2}} \quad H_{5}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{\left|\frac{d}{d v}(v)\right|^{2} d v}{|\vec{x}-\vec{F}(v)|^{2}}
$$

The softening to a line singularity makes this solution completely smooth: A microstate geometry ...

Regularity

Pure D1-D5 source

$$
H_{i} \sim \frac{Q_{i}}{r^{2}}
$$

Singular Geometry

Smeared D1-D5 source + KKM charge

$$
H_{i} \sim \frac{\widetilde{Q}_{i}}{\rho}
$$

Transverse to tube: Metric is spatial R^{4}

A Completely regular six-dimensional geometry: Regular for all supertube profiles

Double Bubbling the D1-D5-P system

Bena, de Boer, Shigemori and Warner, III07.2650
Split the momentum between the D1 and D5 $\quad P=P^{(1)}+P^{(2)}$
First puff-up \Leftrightarrow first dipole charge: Tilt and boost D1 and D5 branes in parallel

$$
\binom{D 1(z)}{P^{(1)}(z)} \longrightarrow\binom{d 1(\theta)}{J^{(1)}(\theta)} \quad\binom{D 5(z 6789)}{P^{(2)}(z)} \longrightarrow\binom{d 5(\theta 6789)}{J^{(2)}(\theta)}
$$

Two puffed up projectors: $\mathrm{X}=1,5$

$$
\widehat{\Pi}_{D X}=\cos \alpha\left(\cos \alpha \mathbb{1}+\sin \alpha \Gamma^{z \theta} \sigma_{1}\right) \Pi_{D X}+\sin \alpha\left(\sin \alpha \mathbb{1}-\cos \alpha \Gamma^{z \theta} \sigma_{1}\right) \Pi_{P}
$$

Supersymmetries
Locally/profile independent of θ Globally/profile arbitrary, $\vec{F}(\theta)$

D1 or D5 16

8

D1 and D5 combined

4

Remains a co-dimension 4 object in this transition ..

Second puff-up \Leftrightarrow second dipole charge: The Superstratum

 So far: $\quad \widehat{\Pi}_{D X}=\cos \alpha\left(\cos \alpha \mathbb{1}+\sin \alpha \Gamma^{z \theta} \sigma_{1}\right) \Pi_{D X}+\sin \alpha\left(\sin \alpha \mathbb{1}-\cos \alpha \Gamma^{z \theta} \sigma_{1}\right) \Pi_{P}$ Locally a tilted D1-D5 system with some profile in θ : (not smeared)

Puff up again into D1-D5 + KKM $(\boldsymbol{\Psi}), J(\Psi)$:

$$
\begin{array}{r}
\widehat{\Pi}=\cos \beta\left(\cos \beta \mathbb{1}+\sin \beta \Gamma^{\hat{z} \psi} \sigma_{1}\right) \widehat{\Pi}_{D 1}+\sin \beta\left(\sin \beta \mathbb{1}-\cos \beta \Gamma^{\hat{z} \psi} \sigma_{1}\right) \widehat{\Pi}_{D 5} \\
\Gamma^{\hat{z}} \equiv \cos \alpha \Gamma^{z}-\sin \alpha \Gamma^{\theta}
\end{array}
$$

Two parameters, $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \Leftrightarrow$ two independent dipole charges
Profile now depends upon two variables, (θ, Ψ) while sweeping out \mathbf{z} \Rightarrow a co-dimension-3 object

The Double Bubbled 3-Charge, 2-Dipole Charge Superstratum

$$
\begin{aligned}
\widehat{\Pi} & =\cos \beta\left(\cos \beta \mathbb{1}+\sin \beta \Gamma^{\hat{z} \psi} \sigma_{1}\right) \widehat{\Pi}_{D 1}+\sin \beta\left(\sin \beta \mathbb{1}-\cos \beta \Gamma^{\hat{z} \psi} \sigma_{1}\right) \widehat{\Pi}_{D 5} \\
& =A_{1} \Pi_{D 1}+A_{2} \Pi_{D 5}+A_{3} \Pi_{P}
\end{aligned}
$$

- Three electric charges $\mathbf{Q}_{\mathrm{D} 1}, \mathbf{Q}_{\mathrm{D5}}, \mathbf{Q}_{\mathrm{P}}$
- Two independent dipole charges parametrized by $(\boldsymbol{\alpha}, \boldsymbol{\beta})$
- The supertube transitions allow independent profiles in (θ, Ψ)

Supersymmetries
Profile independent of (θ, ψ)
Profile depends on θ but not ψ (or on ψ but not θ)
Arbitrary profile as a function of (θ, ψ)

- Generic superstratum is locally primitive (16 supersymmetries).... but globally has same supersymmetries as the original D1-D5-P system
- The superstratum has a two-dimensional set of shape modes and has co-dimension 3 in six (ten) dimensions
- The superstratum should be a completely smooth BPS solution:

Microstate geometries that depends upon functions of two variables.

Can you construct it as a smooth supergravity solution?

BPS Solutions in Six Dimensions

Six-dimensions: IIB compactified on $\mathrm{T}^{4}=$ other four dimensions of the D5
Study minimal, $(N=1)$ supergravity coupled to one anti-self-dual tensor multiplet.
Bosonic field content $\left(g_{\mu v}, B^{+}{ }_{\mu v}\right)+\left(\mathrm{B}_{\mu \nu}^{-}, \phi\right) \Leftrightarrow\left(g_{\mu v}, B_{\mu v}, \phi\right)$
Trivial dimensional reduction to five dimensions yields $N=2$ supergravity coupled to two vector multiplets

Bosonic field content (five dimensions) $\quad g_{\mu \nu}, \mathrm{A}_{\mu}, X^{a} \quad \mathrm{~K}=1,2,3 ; a=1,2$
This six-dimensional theory is precisely the one that underpins the study of threecharge black holes in five dimensions ...
BPS equations derived and studied in great detail in:
Gutowski, Martelli and Reall hep-th/0306235
Cariglia, Mac Conamhna hep-th/0402055
Huge surprise: Bena, Giusto, Shigemori, Warner arXiv:III0.278I
Once the base geometry is fixed, the BPS equations are linear.

- Much easier to solve
- Superposition solutions \Rightarrow phase space structure much simpler
\uparrow Highly relevant to $\mathrm{AdS}_{3} \times \mathrm{S}^{3}$ holography

The Elements of BPS Solutions

The metric:

$$
d s^{2}=2\left(Z_{1} Z_{2}\right)^{-1 / 2}(d v+\beta)\left(d u+\omega-2 Z_{3}(d v+\beta)\right)-\left(Z_{1} Z_{2}\right)^{1 / 2} d s_{4}^{2}
$$

The 3 -form flux and its dual have an electric and magnetic decomposition:

$$
\begin{aligned}
G & =d\left[-\frac{1}{2} Z_{1}^{-1}(d u+\omega) \wedge(d v+\beta)\right]+\widehat{G}_{1}, \\
e^{2 \sqrt{2} \phi} *_{6} G & =d\left[-\frac{1}{2} Z_{2}^{-1}(d u+\omega) \wedge(d v+\beta)\right]+\widehat{G}_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{G}_{1} & \equiv \frac{1}{2} *_{4}\left(D Z_{2}+\left(\partial_{v} \beta\right) Z_{2}\right)+(d v+\beta) \wedge \Theta_{1} \\
\widehat{G}_{2} & \equiv \frac{1}{2} *_{4}\left(D Z_{1}+\left(\partial_{v} \beta\right) Z_{1}\right)+(d v+\beta) \wedge \Theta_{2}
\end{aligned}
$$

Dilaton: $\quad e^{2 \sqrt{2} \phi} \equiv \frac{Z_{1}}{Z_{2}}$
Building blocks: Base metric, $\mathrm{ds}_{4}{ }^{2}$; (fibration) vector field, β; Potential functions $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3} ; \quad$ Magnetic 2 -forms Θ_{1}, Θ_{2}; Angular momentum vector, ω.

Everything (including $\mathrm{ds}_{4}{ }^{2}$) is independent of u but can depend on v and the coordinates, \vec{y}, on the four-dimensional base.

The geometric elements

The base geometry, $\mathrm{ds}_{4}{ }^{2}$, is required to be "almost hyper-Kähler"
Anti-self-dual 2-forms, $J^{(A)}$, on four-dimensional base, satisfying:

$$
\begin{aligned}
J_{p}^{(A) m_{p} J^{(B) p}{ }_{n}} & =\epsilon^{A B C} J^{(C) m_{n}}-\delta^{A B} \delta_{n}^{m} \\
\tilde{d} J^{(A)} & =\partial_{v}\left(\beta \wedge J^{(A)}\right)
\end{aligned}
$$

where \tilde{d} is the exterior derivative on the base, $\mathrm{ds}_{4}{ }^{2}$, (i.e. in \vec{y} alone)
The vector field, β, that defines the v-fibration is required to satisfy:

$$
D \beta=*_{4} D \beta \quad D \equiv \tilde{d}-\beta \wedge \partial_{v}
$$

Obvious solution: $\mathrm{ds}_{4}{ }^{2}$ and β are v-independent and $\mathrm{ds}_{4}{ }^{2}$ is hyper-Kähler.
N.B. These are the only non-linear parts of the system and either define, or are defined entirely in terms of, the base geometry

The equations (as functions of v and \vec{y}) for the potential functions $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}$, the magnetic 2 -forms Θ_{1}, Θ_{2} and the angular momentum vector, ω, are linear!

First step to the superstratum: Superthreads

Double bubbling is a constructive prescription.
The first puff-up: Give the D1-D5-P system an arbitrary profile, $\vec{F}(v)$, in six dimensions adding d1-d5 dipoles + angular momentum, J .

Solved in R^{4} base. Bena, Giusto, shigemori, Warner arxiv: $1 / 10.2781$
Completely new three-charge, two-dipole charge BPS solution with arbitrary profile.
Superthreads have highly non-trivial and non-linear interactions:
Layered linear system: Linear solutions \rightarrow Non-linear sources for next linear layer
\downarrow Magnetic field and electric fields source each other

- Magnetic field + electric fields source angular momenta

Multi-superthreads have a very rich structure ...

The Next Step Multi-Superthreads and Supersheets

Niehoff, Vasilakis and Warner arXiv:I203.1348
Multiple, independent, interacting superthreads:
New three-charge, two-dipole charge BPS solutions that depends upon multiple, independent functions, $\vec{F}^{(p)}(v)$, of one variable
One can take the three-charge multiple superthread solution and smear into a supersheet that depends upon functions of two variables.

Multiple, independent, interacting superthread solution is essential to getting a supersheet described by generic functions of two variables

Multiple, independent

$$
\longrightarrow \text { Supersheet }
$$ superthreads

Supersheet: New three-charge, two-dipole charge BPS solutions that depends upon functions of two variables. Details: See poster by Niehoff and Vasilakis

Conclusions

The classification of microstate geometries has made remarkable progress
There is a very important class of new BPS solutions called superstrata

- Solitonic bound-state with three charges, two independent dipole charges
- 4 supersymmetries in general; 16 supersymmetries locally.
- Arbitrary shapes as functions of two variables
- Smooth in D1-D5-P duality frame
\Rightarrow New, extremely rich families of microstate geometries
Route to construction: Six-dimensional $N=1$ supergravity
- BPS Equations are linear six dimensions
\downarrow Much easier to solve; superposition \Rightarrow phase space structure
- Many new multicomponent BPS solutions; Superthreads and supersheets
- Superstratum requires supersheets + KKM.

Solve $\quad D \beta=*_{4} D \beta, D \equiv \tilde{d}-\beta \wedge \partial_{v} \quad$ in general?

