

FIG. 6. Differences in surface properties between the HIGH and LOW runs: surface temperature (color; contour interval of 0.5°C) and near-surface winds (vectors) for (top) March and (bottom) October climatologies in the (left) fully coupled and the (right) ocean-only experiments.

SINTEX-F2, SVS minus CTRL

Eq, 156E

24hr time average

east

west

Vertical diffusivity (10⁻⁶ m^2/s), 0.17°S, 10-year average

 $\kappa = \gamma \tfrac{\epsilon}{N^2}$

The variation of $\varepsilon \sim N$ for constant Ri has implications for the scaling of the turbulence

$$\epsilon = \ell_v^2 N^3 f(Ri)$$

then

$$f_{ij} = rac{u_t}{N}$$

 $f(Ri) = 1, \ \ell_v = L_O = \sqrt{\epsilon/N^3}$
 $f(Ri) = Ri^{-3/2}, \ \ell_v = L_C = \sqrt{\epsilon/S^3}$

 $\kappa_v = \frac{\gamma u_t^2 f(Ri)}{N}$

$u_t \simeq 0.1 \, \tilde{u}$

Parameterization if S², N² **NOT** resolved

$$\kappa(\mathbf{x},t) = \frac{\gamma}{N^2} \ \epsilon(S^2, N^2)$$

 $(S^2, N^2) \sim (\langle U \rangle, \langle N \rangle^2, F(x - x', t - t'), F_T \downarrow)$