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1. Observational/theoretical background

All 3 components of U are not fully exploited
* Horizontal displacements are much smaller than vertical,
« and, these are relatively difficult to interpret(!)

dH

um/m/km2

0
I—O.2
-0.4

“Detectable” horizontal motions require a “large” mass
anomaly with “asymmetry” in spatial distribution
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GNET: e.g., Bevis et al., 2012, PNAS
Ice speed: Rignot & Mouginot, 2009, GRL
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2. Question: What drives horizontal bed motion?
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Data: Khan et al., 2016, Sci. Adv. ftp://ftp.spacecenter.dk/pub/abbas/GNET/v1/
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ftp://ftp.spacecenter.dk/pub/abbas/GNET/v1/

3. ISSM: Ice & Sea-level System Model

High-order ice sheet model (Larour et al., 2012)

* Ingests surface observables (e.g., ice speed)
* Constrains glaciological unknowns (e.g., basal drag)

Global geodetic model (Adhikari et al., 2016)

* Ingests ice loads (or hydrological or tidal forcings)
* Predicts relative sea-level, crustal deformation, etc.

Systematic coupling of polar ice sheets

Radially-stratified viscoelastic rotating Earth
» Seismologically-constrained PREM (D&A, 1981)
e Bayesian GIA models (Caron et al., 2018)

ISSM Sea-level Workshop 2018
e June 11-12 (after AOGS Annual Meeting)
* University of Hawaii at Manoa
* https://issm.jpl.nasa.gov
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https://issm.jpl.nasa.gov/

4.1 Results: GRACE-based forwar

Global surface loads = Global GSM + Global GAC

GSM: Ice/water mass transport between/within
GAC: Non-tidal atmospheric/oceanic mass redist

Water equivalent height of GSM load [cm]: 01/2008

https://grace.jpl.nasa.gov/
Watkins et al., 2015, JGR

d modeling

continents & oceans
ribution (ECMWF model)

Water equivalent height of GAC load [cm]: 01/2008

—

10 http://www.gfz-potsdam.de/en/grace/

See Flechtner & Dobslaw, 2013, GRACE 327-750 AOD1B Product Description
Document for Product Release 05, GTZ, Potsdam, Germany


https://grace.jpl.nasa.gov/
http://www.gfz-potsdam.de/en/grace/
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4.1 Results: GRACE does explain vertical, but not the horizontals
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GRACE does not provide high enough resolution to capture
“local asymmetry” in mass anomaly that is required to induce
substantial horizontal motions at RINK station.




4.2 Results: SMB cannot explain horizontal motion either

Global surface loads = Global GAC + farfield GSM +leeal-GSM + local SMB
SMB: Ice surface mass balance based on MAR & RACMO model

Water equivalent height of SMB [m]: 01/2008 June — September 2012 October 2012 - January 2013
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By the process of elimination, we are led to seek a coherent

http://www.cryocity.org/mar-explorerhtml pattern in the dynamic mass transport through Rink Glacier.
e.g., Fettweis et al., 2005, Clim. Dyn.
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4.3 Results: Inference of dynamic glacial mass transport
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...and, a glacial melt wave is detected!
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5. Summary, implications, opportunities...

* Ice mechanics
* Qurs is the first detection of glacial melt waves in any of Greenland or Antarctic glaciers.

* Atotal of 6.7 Gt of ice was dumped to the oceans during 4 summer months in 2012, implying that
glaciers can indeed transport substantial mass on short timescales!

* Climate & sea-level
* Increased frequency of amplified seasonal waves will have ramifications for future sea-level rise.

* Geodesy
* Asingle station bedrock GPS may be sufficient to quantify glacial mass transport.

* An engineered GPS network, combined with space measurements of crustal deformation (e.g.,
NISAR), should revolutionize the way we constrain mass in dynamic ice-sheet models.
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