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Critical role of ocean heat in Arctic sea ice melt

Heat flux that can 
explain the sea ice 
loss during the past 
few decades is 
≈1 W/m2 (Kwok & 
Untersteiner, 2011)

Seasonal to inter-
annual predictions 
have largest errors in 
MIZs (Tietsche et al., 
2014) with extent 
predictability for 
only several months 
(Stroeve et al., 2014). 

Perovich et al 
(2011)

Ice-Mass-Balance  
buoy observations
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Where does the Arctic Ocean heat come from?

Courtesy of Jack Cook, WHOI

Arctic is salt stratified with 
heat from Atlantic and Pacific 

Oceans trapped at depth

Wiki

Heat stored in the halocline is an important source during winter



⇣/f @ 80m

LLC4320 
Resolution < 1km

What is the role of Arctic 
eddies in heat advection?
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Heavy footprints of oceanic fronts, eddies and filaments 
on sea ice distribution in marginal ice zones
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Mixed layer 
instabilities!

Heavy footprints of oceanic fronts, eddies and filaments 
on sea ice distribution in marginal ice zones



Part I.  Sea ice-ocean interactions at eddy scales

Can eddies efficiently redistribute sea ice and enhance 
vertical heat fluxes? How robust is this mechanism?



Mechanical sea ice-ocean interactions
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Sea ice rheology: e.g. visco-plastic shear-thinning fluid (Hibler III,1979)
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Sufficiently low-concentrated sea ice over submesoscale eddies 
must mimic the upper-ocean vorticity!
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Mechanical sea ice-ocean interactions

in MIZs
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Simulations of ice-covered mixed layer instabilities 

• MITGCM: simulations of sea ice 
dynamics (as a visa-plastic fluid) 
over an eddying mixed layer.

Initial frontal conditions are 
idealizations of the observed fronts. 

Grid of 0.5 km allows the 
development of frontal instabilities 
and ice-ocean stresses that 
redistribute sea ice

Sea ice concentration Hypothesis: instabilities of 
meltwater fronts in MIZs can 

strongly affect sea ice dynamics



• Marginal ice zone expands 
due to an intense lateral 
sea ice transport. Sea ice is 
not a passive tracer.

⇠ = ±0.2f+
Manucharyan & Thompson (2017)

• Cyclonic eddies (~10km, 0.2 
m s-1) accumulate the sea ice 
while anticyclones repel it.

• Vertical velocities are 
O(10 m day-1) and 
ice-ocean heat fluxes 
reach O(100 W m-2)!

Simulations of ice-covered mixed layer instabilities 



⇠ = ±0.2f+

Enhanced sea ice-ocean heat fluxes in marginal ice zones

Manucharyan & Thompson (2017)

• Cyclonic eddies (~10km, 0.2 
m s-1) accumulate the sea ice 
while anticyclones repel it.

• Vertical velocities are 
O(10 m day-1) and 
ice-ocean heat fluxes 
reach O(100 W m-2)!

• Marginal ice zone expands 
due to an intense lateral 
sea ice transport. Sea ice is 
not a passive tracer.



Sea ice accumulation in cyclonic eddies and filaments
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Lateral heat and sea ice transport across the MIZ

< v0h0
eff > < v0T 0 >Ice volume transport: Surface heat transport:
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Part II.  Arctic-wide influence of mesoscale and 
submesoscale ocean variability on sea ice

Is there a significant mesoscale/submesoscale variability in 
the Arctic? How does it affect the sea ice dynamics?



May—Sep, 2012

Global ocean-ice model
LLC4320, 0.8 km grid
~2 Billion grid boxes!
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Eddy-enhanced ocean-ice heat fluxes: summer

Surface expression of mesoscale eddies is strongest in the summer when 
dissipation by sea ice is minimized. Ocean-ice heat flux is a stirred field!
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Despite low Ro~0.2, winter-time submesoscale activity constitutes about 
80% of the average 2.4 W/m2 ocean-ice heat fluxes Arctic-wide.

100 200 300 400

100

200

300

400

500

600

-0.1

0

0.1

100 200 300 400
0

0.2

0.4

0.6

0.8

1

J F M A M J J A S
-3

-2

-1

0 10 -5

Mesoscale
Submesoscale

-3

-2

-1

0

10 -3

J F M A M J J A S
0

2

4

6

8 10 -4

0

0.004

0.008

0.012

0.016

km km

km

J F M A M J J A S
-2.5

-2

-1.5

-1

-0.5

0 10 -3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Submesoscale variance 

Dissipation 
by sea ice

winter summer

Eddy-enhanced ocean-ice heat fluxes: winter



Summary of sea ice-ocean interactions

MLI is prominent in MIZs, strongest 
frontogenesis occurs in summer and 
convective instabilities in winter.

Sea ice gets trapped in cyclones and 
gains its vorticity, dramatically 
decreasing the upper-ocean 
dissipation.

Sea ice dynamics is getting more 
‘turbulent’ because of  weaker eddy 

dissipation in the upper ocean.

Increased eddy energy may 
contribute to the enhanced ocean 

heat fluxes and accelerated
sea ice melt.Sea ice 

melt

Enhanced 
upper-ocean 
variability

Enhanced 
vertical 

heat fluxes
Global Warming
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More goods?



Seeing the ocean through sea ice

• What is the relation 
between sea ice and 
ocean velocities? 

• Under which 
atmospheric 
conditions the 
ocean vorticity field 
is reflected in sea ice 
concentrations?

• What can we learn 
about submesoscale 
ocean dynamics 
from sea ice 
observations?

uo = F (ui,�) ?
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Addressing scale interactions in sea ice dynamics:  
eddies, internal waves, and mixing hotspots

Internal waves break 
up the sea ice 

exposing it the open 
ocean to atmospheric 

fluxes

Mixing hotspots in 
Arctic Ocean affect 
halocline thickness 
and vertical heating

Eddies and waves 
become more 

energetic because of 
the changing damping

Sea ice dynamics North of Svalbard (MITGCM, ~1km res.)

100km
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Thank you!

Questions?



Critical influence of sea ice on upper-ocean vorticity
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depends on the 
rheology!
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Ekman eddy spindown

Correlation between the 
ice and ocean vorticity 

occurs when c<80% and 
significantly reduces 

upper- ocean dissipation

Vorticity dissipation by ice
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Enhanced heat fluxes over anticyclones


