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Criucal role of ocean heat in Arctic sea 1ce melt
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] Surface melt
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Heat flux that can
explain the sea ice
loss during the past
few decades is

~1 W/m2 (Kwok &
Untersteiner, 2011)

Seasonal to inter-
annual predictions
have largest errors in
MIZs (Tietsche et al.,
2014) with extent
predictability for
only several months
(Stroeve et al., 2014).



Where does the Arctic Ocean heat come from?
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s TN Arctic is salt stratified with
) 82 heat from Atlantic and Pacific
- Oceans trapped at depth

Heat stored in the halocline is an important source during winter
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Heavy footprints of oceanic fronts, eddies and filaments
on sea ice distribution in marginal ice zones

Beaufort Gyre from SAR imagery Labrador Current (MODIS)  Fram St. (MODIS)




Heavy footprints of oceanic fronts, eddies and filaments
on sea ice distribution in marginal ice zones

Beaufort Gyre from SAR imagery Labrador Current (MODIS)  Fram St. (MODIS)
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Partl. Seaice-ocean interactions at eddy scales

Can eddies efliciently redistribute sea ice and enhance
vertical heat fluxes? How robust is this mechanism?



Mechanical sea ice-ocean interactions
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Sea ice rheology: e.g. visco-plastic shear-thinning fluid (Hibler I11,1979)



Mechanical sea ice-ocean interactions
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in MIZs

Sutficiently low-concentrated sea ice over submesoscale eddies
must mimic the upper-ocean vorticity!



Simulations of ice-covered mixed layer instabilities

. Sea ice concentration Hypothesis: instabilities of
40 | ! meltwater fronts in MIZs can
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* MITGCM: simulations of sea ice
dynamics (as a visa-plastic fluid)
over an eddying mixed layer.

Initial frontal conditions are
idealizations of the observed fronts.

e ol Grid of 0.5 km allows the
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and ice-ocean stresses that
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Simulations of ice-covered mixed layer instabilities
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due to an intense lateral
sea ice transport. Sea ice is
not a passive tracer.



Enhanced sea ice-ocean heatfluxes in marginal ice zones

Manucharyan & Thompson (2017)
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e Marginal ice zone expands
due to an intense lateral
sea ice transport. Sea ice is
not a passive tracer.

e Cyclonic eddies (~10km, 0.2
m s1) accumulate the sea ice
while anticyclones repel it.

e Vertical velocities are
O(10 m day?) and
ice-ocean heat fluxes
reach O(100 W m-2)!



Sea ice accumulation in cyclonic eddies and filaments
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Lateral heat and sea ice transport across the M1Z

Ice volume transport: < v’hle if = Surface heat transport: < i
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Tracer diffusivity K=O(200m?2/s); scales linearly with initial frontal Rossby number.



Partll. Arctic-wide influence of mesoscale and
submesoscale ocean variability on sea ice

[s there a significant mesoscale /submesoscale variability in
the Arctic? How does it affect the sea ice dynamics?
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Eddy-enhanced ocean-ice heat fluxes: summer
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Surface expression of mesoscale eddies is strongest in the summer when
dissipation by sea ice is minimized. Ocean-ice heat flux is a stirred field!



Eddy-enhanced ocean-ice heat fluxes: winter
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Despite low Ro~0.2, winter-time submesoscale activity constitutes about
80% of the average 2.4 W /m?2 ocean-ice heat fluxes Arctic-wide.



Summary of sea ice-ocean interactions

MLI 1s prominent in MI1Zs, strongest Sea ice dynamics is getting more
frontogenesis occurs in summer and ‘turbulent’ because of weaker eddy
convective instabilities in winter. dissipation in the upper ocean.
Sea ice gets trapped in cyclones and Increased eddy energy may
gains its vorticity, dramatically contribute to the enhanced ocean
decreasing the upper-ocean heat fluxes and accelerated
dissipation. i sea ice mellt.

Enhanced Enhanced
vertical . upper-ocean
heat fluxes | . variability
Global Warming







Seeing the ocean through seaice
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« What is the relation
between sea ice and
ocean velocities?

e Under which
atmospheric
conditions the
ocean vorticity field
is reflected in sea ice
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concentrations?

e What can we learn

about submesoscale

ocean dynamics

from sea ice

0.6 e - _ observations?




Addressing scale interactions in sea ice dynamics:
eddies, internal waves, and mixing hotspots

Internal waves break
up the sea ice
exposing it the open
ocean to atmospheric
fluxes

Mixing hotspots in
Arctic Ocean affect
halocline thickness

and vertical heating

Eddies and waves
become more
energetic because of
the changing damping

Sea ice dynamics North of Svalbard (MITGCM, ~1km res.)



Addressing scale interactions in sea ice dynamics:

cddies, internal waves, and mixing hotspots

Sea ice dynamics North of Svalbard (MITGCM, ~1km res.)

Internal waves break
up the sea ice
exposing it the open
ocean to atmospheric
fluxes

Mixing hotspots in
Arctic Ocean affect
halocline thickness
and vertical heating

Eddies and waves
become more
energetic because of
the changing damping



Thank you!

Questions?



Critical influence of sea ice on upper-ocean vorticity
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Conditional PDF
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