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Habitability of Ocean Worlds

* Ocean worlds are exciting prospects for habitability

HOW THE SOLAR SYSTEM'S LARGEST OCEAN WORLDS COMPARE IN SIZE

v

ENCELADUS

Water radius:

140 mi./
220 km.

World radius:

157 mi./
252 km.

SOURCE: Steve
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DIONE

Water radius:

300 mi./
480 km.

World radius:

349 mi./
561 km.

Vance - NASA

EARTH

Water radius:

430 mi./
690 km.

World radius:

3,959 mi./
6,371 km.

\/JPL-Caltech

EUROPA

Water radius:

550 mi./
880 km.

World radius:

972 mi./
1,565 km.

PLUTO

Water radius:

630 mi./
1010 km.

World radius:

738 mi./
1,187 km.

TRITON

Water radius:

730 mi./
1170 km.

World radius:

840 mi./
1,352 km.

CALLISTO

Water radius:

1,120 mi./
1,800 km.

World radius:

1,498 mi./
2,410 km.

TITAN

Water radius:

1,180 mi./
1,890 km.

World radius:

1,601 mi./
2,576 km.

™ Earth has a surprisingly small amont of water compared to
other worlds in the Solar System. Each measurement is the
spherical radius of the world and its water (including ice):
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GANYMEDE

Water radius:

1,460 mi./
2,350 km.

World radius:

1,635 mi./
2,631 km.

BUSINESS INSIDER




Habitability of Ocean Worlds

* Oxidants are produced on the surface by ion
irradiation

* Reductants might be produced
at the seafloor if hydrothermal [t
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circulation is present
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Credit: NASA Credit: Pappalardo (2010), after Stevenson (2000)



Habitability of Ocean Worlds

= How are heat and materials
transported across the oceans
of icy satellites!?
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Credit: NASA Credit: Pappalardo (2010), after Stevenson (2000)
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|) Theoretical Predictions for Convection



Influence of Rotation

* Diversity of dynamical regimes in rotating spherical
shell Rayleigh-Benard convection

® Temperature fluctuations
(Gastine et al. 2016)

(a) Non-rotating
(b) Weak rotational influence
(c) Moderate rotational influence

(d) Stronger rotational influence




Convective Regimes

* Gastine et al. (2016): Extensive suite of rotating
spherical shell RBC models to study scaling behaviors



Convective Regimes

Gastine et al. (2016): Extensive suite of rotating
spherical shell RBC models to study scaling behaviors

* Heat transfer efficiency (Nu) as a function of thermal
forcing (Ra) and rotation rate (E)
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Convective Regimes

Gastine et al. (2016): Extensive suite of rotating
spherical shell RBC models to study scaling behaviors
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Convective Regimes

Gastine et al. (2016): Extensive suite of rotating
spherical shell RBC models to study scaling behaviors

* Heat transfer efficiency (Nu) as a function of thermal
forcing (Ra) and rotation rate (E)
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Convective Regimes

Gastine et al. (2016): Extensive suite of rotating
spherical shell RBC models to study scaling behaviors

* Heat transfer efficiency (Nu) as a function of thermal
forcing (Ra) and rotation rate (E)

] N Total heat flux QD
4 e E——
Conductive heat flux  pC,kAT

1 Buoyancy  ag,ATD3
L3 Ra = ———F—— =
} Diffusion VK

Viscous force v

Coriolis force OD?2

' Nu—1=0.08(Ra/Ra. — 1)

Nu = 0.15Ra>/ 2 E?
Nu = 0.07Ra/?




Convective Regime Transitions

Convective regimes and their predicted boundaries
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Convective Regime Transitions

Convective regimes and their predicted boundaries
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Convective Regime Transitions

Convective regimes and their predicted boundaries
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Convective Regime Predictions

Application to icy ocean worlds
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Convective Regime Predictions

Application to icy ocean worlds
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Convective Regime Predictions

Application to icy ocean worlds
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Convective Regime Predictions

Weak rotational influence predicted for their oceans
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2) Numerical Convection Models



Motivation

* Numerical models of global ocean convection

= How does the mantle
influence the ocean?

lce-
Ocean Seafloor A N
Interface ol D i g

= How does the ocean
influence the ice shell?

/ Neld il Chaos Terrains




Numerical Model: MaglC

* Numerical models of global ocean convection

* Boussinesq thermal convection in a rotating spherical shell
(ocean tides and salinity gradients are not considered)
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Numerical Model: MaglC

* Numerical models of global ocean convection

* Boussinesq thermal convection in a rotating spherical shell
(ocean tides and salinity gradients are not considered)

* Transitional regime chosen a priori
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Numerical Model: MaglC

* Numerical models of global ocean convection

* Boussinesq thermal convection in a rotating spherical shell
(ocean tides and salinity gradients are not considered)

* Transitional regime chosen a priori

* Three mantle heat flow patterns imposed

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles

> >

Seafloor

Obliquity-driven Eccentricity-driven

Radiogenic heating tidal heating tidal heating Buethe (2013)
e.g., Buethe




Steady Zonal Ocean Currents

* Three zonal jets develop with retrograde eqtr. flow

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles

-6000 T 6000
Reynolds number, Re = UD/v




Steady Radial Ocean Currents

» Strong upwelling develops at low latitudes

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles

-200 T 200
Reynolds number, Re = UD/v




Radial Ocean Currents

* Instantaneous radial velocity is faster, smaller scale

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles

-3000 I I 3000
Reynolds number, Re = UD/v




Temperature

* Thermal plumes are mixed into the bulk ocean

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles

T




Convective Heat Transfer

* |ce-ocean interface heat flux peaks near equator,
pattern mimics the mantle heat flow at high latitudes

Case |: Isothermal Case 2: Cold Poles Case 3: Hot Poles




Convective Heat Transfer

* Heat flux decomposition: total = mean + turbulent

* Mean heat flux due to meridional
overturning circulations

 TJurbulent heat flux due to
fluctuating motions

<V7~T > — <Vr T > + <V7{T/ > (All variables are dimensionless)
—— —— ——
Total Mean Turbulent

(Overbars denote temporal averages; primes denote fluctuations from the mean;
brackets denote spatial averages)




Convective Heat Transfer

* Heat flux decomposition: total = mean + turbulent

* Mean heat flux due to meridional
overturning circulations (red)

* Jurbulent heat flux due to
fluctuating motions (blue)

O
0
2
=

<
-

Mean Turbulent
heat flux heat flux

Ic
S
-
]

<

)
O

2
V
n
S

O

Dimensionless Heat Flow




Convective Heat Transfer

* Heat flux decomposition: total = mean + turbulent

* Mean heat flux due to meridional
overturning circulations (red)

* Jurbulent heat flux due to
fluctuating motions (blue)
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Convective Heat Transfer

* Heat flux decomposition: total = mean + turbulent

* Mean heat flux due to meridional
overturning circulations (red)

* Jurbulent heat flux due to
fluctuating motions (blue)
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Global Oceanographic Models

e Zonal Flows

* Zonal jets with westward flow near equator, eastward flow at high
latitudes are not sensitive to mantle heat flow variations

* Radial Velocity

* Mean equatorial upwelling and mid-latitude downwelling are not
strongly dependent on mantle heating

e Convective Heat Transfer

* Heat flux peak at low latitudes is robust to mantle heating
heterogeneities

* Polar heat flux behavior depends on mantle heat flow pattern
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3) Boundary Layer Implications



Ice Shell Implications

Oceanic heat transfer may strongly influence any ice-
ocean material exchange

* |ce shell thickness

— |sothermal

— Cold Poles - Exchange mechanisms
+ Geologic activity

—— Hot Poles
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lce Shell Thickness

Latitudinal heterogeneity in heat flux should intensify
regional melting, reducing ice thickness
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Exchange Mechanisms

Thin Ice Shell: melting of the ice shell
may enable direct ocean access through ﬁ

cracks and/or local melt-through events

Cracks / Melt-through
most likely near
equator
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Marine lce Accretion

Variations in ice thickness can lead to relatively pure
“marine” ice accretion via an ice pump

Mean
Sea Level
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Marine lce Accretion

* Variations in ice thickness can lead to relatively pure
“marine” ice accretion via an ice pump
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Exchange Mechanisms ‘

Thick Ice Shell: thermo-compositional
diapirism may occur with any substantial
thickness of relatively pure marine ice

Diapirism most likely
near equator
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“Dirty” ice

“Clean” ice

|

|

Diapirism most likely
near equator and
poles

Pappalardo and Barr, 2004

Hot Poles




Geologic Activity

Europa’s surface is young and riddled with many
unique geologic features




Geologic Activity

* Europa’s surface is young and riddled with many
unique geologic features, such as chaos terrains
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e (Chaos terrains are

latitudes

North Pole

120°W

90w |

South Pole
o°

330°'W e J0'E

¥

y. AN
/}/
N et

Geologic Activity

most prevalent at low and polar
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NASA/Erin Leonard, Alex Patthoff, and Dave Senske, building on work by Ron Greeley, Thomas Doggett and Melissa Bunte via EOS




Geologic Activity

* Salts with endogenic origin are coincident with
leading hemisphere chaos terrains

100%

Abundance, endogenous material

Rischer et al.2015



Implications for Europa

* Heterogeneous heating of the ice shell may promote
exchange processes in locally thinned areas

* Fractures and melt-through (thin shell)
* Diapirism via marine ice accretion (thick shell)

* Chaos terrains suggest eccentricity tidal heating of the mantle
(“hot poles™ case)
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Habitability of Ocean Worlds

= QOceans of Europa, Ganymede, Enceladus, and Titan
predicted to be weakly influenced by rotation

* 3D turbulence, three zonal jets, and an equatorial upwelling

* Convective heat transfer has a maxima near the equator;
high latitudes are sensitive to mantle heat flow distribution

= Oceanic heat transfer may strongly influence any ice-
ocean material exchange




