TEMPERATURE FRONTS AND FLUXES IN STABLE BOUNDARY LAYERS

Peter P. Sullivan¹

Jeffrey C. Weil¹, Edward G. Patton¹, Harmen J. J. Jonker², Dmitrii V. Mironov³

¹National Center for Atmospheric Research ²Department of Civil Engineering & Geosciences, Delft University, Netherlands ³German Weather Service

TURBULENCE+WAVES IN THE VERY STABLE ATMOSPHERIC SURFACE LAYER: 8 pm to 4 am

MOTIVATION

- Stratified stable boundary-layers (SBLs) are ubiquitous in the atmosphere and ocean
- Climate projections and weather forecasts are (very) sensitive to their SBL parameterization (Holtslag et al, 2013)
- Vertical layering from refractive index turbulence in SBLs impacts all forms of propagation, light beams, radio waves, sounds (Wyngaard et al, 2001)
- Air quality (Weil, 2012)
- Nocturnal low level jets and stratified turbulence are often the design point for loads on wind turbines over the Great Plains (Kelley et al, 2004)

SBL MODELING: Single-Column Models vs LES Cuxtart et al (2006), Beare et al (2006)

Coherent Structures in Geophysical Boundary Layers

LARGE EDDY SIMULATION OF CANONICAL STABLE BOUNDARY LAYERS

- Gradient Richardson number $R_i = \frac{g}{\theta_o} \frac{\partial \theta}{\partial z} / \left(\frac{\partial \mathbf{u}_h}{\partial z}\right)^2 < 0.25$ (weakly stable)
- Incompressible Bousinessq flow model, CFL limited timestep

WIND AND TEMPERATURE PROFILES

 $- z_i/L = 1.7$ - 2.4 - 3.2 - 6.0

Flow is horizontally homogeneous, what makes net horizontal scalar fluxes?

FLUCTUATIONS IN THE TEMPERATURE FIELD

POTENTIAL TEMPERATURE CONTOURS IN AN XZ PLANE

60 s of real time

 $z_i / L = 1.7$

POTENTIAL TEMPERATURE CONTOURS IN AN XZ PLANE

TEMPERATURE FIELD IN X-Y PLANE

DECREASING STRATIFICATION ?

CONTOURS OF PASSIVE SCALAR C IN STABLY STRATIFIED NEUTRAL FLOW

TEMPERATURE CONTOURS IN STABLY STRATIFIED FLOW OVER 2D BUMPS, ak = 0.3

OBSERVATIONS OF TEMPERATURE PROFILES FROM A ``VIRTUAL" TOWER

CONTOURS OF VERTICAL TEMPERATURE GRADIENT

INSTANTANEOUS VERTICAL PROFILES OF TEMPERATURE

Extreme Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes

BEN B. BALSLEY, ROD G. FREHLICH, MICHAEL L. JENSEN, AND YANNICK MEILLIER

CIRES, University of Colorado, Boulder, Colorado

ANDREAS MUSCHINSKI

CIRES, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

INSTANTANEOUS TEMPERATURE PROFILES OBSERVED FROM THE TALL TOWER IN CASES-99

DYNAMICS NEAR A SCALAR FRONT

3D ISOSURFACE OF SWIRL COLORED BY VERTICAL VORTICITY

CONDITIONAL HORIZONTAL FLOW VECTORS OVERLAYING TEMPERATURE FIELD NEAR A FRONT $z/z_i = 0.2$

VERTICAL AND HORIZONTAL TEMPERATURE FLUXES IN STABLY STRATIFIED FLOW

Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux

J. C. WYNGAARD, O. R. COTÉ AND Y. IZUMI

FIG. 4. Ratio of horizontal and vertical components of heat flux. The curve is the local free convection prediction.

 $\overline{w\theta} \sim \tau \overline{w^2} \frac{\partial \psi}{\partial \tau}$

 $\overline{u\theta} \sim \tau \overline{w\theta} \frac{\partial U}{\partial z}$

EPILOGUE: VERTICAL VORTICITY

SUMMARY

- LES of canonical SBL with 1024^3 mesh, $\triangle = 0.39$ m
- Organized coherent temperature fronts
 - Can span the entire depth of the SBL up to the low level jet
 - Tilted in the streamwise direction
 - Spatial scale \downarrow as $z_i/L\uparrow$
- Between fronts scalars are vertically well mixed, or even unstable, staircase pattern
- Propagating fronts are sources of large-scale intermittency, and induce vertical and horizontal momentum and scalar fluxes
- Based on conditional sampling
 - Fronts are caused by upstream and downstream vortical structures
 - Scales are in the energy containing range
 - Robust for varying stratification $z_i/L = [0, 6]$
 - Interpretation similar to hairpin packets discussed by Adrian (2007)
- LES results are supported by observations in wind tunnels, upper ocean, and CASES-99