Designing gravity via $\operatorname{Sym}^{\mathrm{N}}(\mathrm{C})$

Alejandra Castro
DAMTP
Gravity from Algebra KITP Conference January, 2023

$\mathrm{CFT}_{\mathrm{D}} \rightarrow \mathrm{AdS}_{\mathrm{D}+1}$ Gravity

Holographic CFT

A CFT whose dual gravity theory that has a low-energy EFT description.

A few (but not all) properties associated to them are:

- Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
- Sparse spectrum (degeneracy of light operators are not controlled by N).
- Factorization of correlation functions, i.e., Generalized Free Fields.(!!)
- ...

Holographic CFT

A CFT whose dual gravity theory that has a low-energy EFT description.

A few (but not all) properties associated to them are:

- Large central charge (large-N), which leads to a large number of d.o.f. (BHs)
- Sparse spectrum (degeneracy of light operators are not controlled by N).
- Factorization of correlation functions, i.e., Generalized Free Fields.(!!)
- ...

How many conditions do I need to impose?
How stringent are the conditions?

Designing AdS_{3} Quantum Gravity

- Define gravity via the dual CFT_{2}
- Identify necessary conditions
- Determine possible designs we can achieve
- Focus on CFT_{2} that we can quantify:

Symmetric Product Orbifolds

Classification of Symmetric Product Orbifolds

Deformations of Symmetric Product Orbifolds

Classification of Symmetric Product Orbifolds

- Implement conditions
- Precise outcomes (with surprises)
A. Belin, J. Gomes, C. Keller, AC, 2016, 2018
A. Belin, C. Keller, B. Mühlmann, AC, 2019 (x2)
A. Belin, N. Benjamin, C. Keller and S. Harrison, AC, 2020
N. Benjamin, S. Bintanja, J. Hollander, AC 2022
- New features in the design of AdS/CFT

- Breaking $\operatorname{Sym}^{N}(C)$
L. Apolo, A. Belin, S. Bintanja, C. Keller, AC 2204.07590 and 2212.07436

Deformations and New Flavours of AdS/CFT

Symmetric Product Orbifolds

Orbifold by the permutation group S_{N}

Symmetric Product Orbifolds

Orbifold by the permutation group S_{N}

The orbifold introduces two class of states:

- untwisted sector: it keeps states that are invariant under S_{N}.
- twisted sectors: new states labelled by conjugacy classes of S_{N}.

Symmetric Product Orbifolds

- Appeal: Mathematical and analytic control, e.g., DMVV formula.
- Familiarity: DID5 CFT.
- Universality: large-N behavior is robust.
- Utility: compelling features for AdS/CFT.

Symmetric Product Orbifolds

- Appeal: Mathematical and analytic control, e.g., DMVV formula.
- Familiarity: DID5 CFT.
- Universality: large-N behavior is robust.
- Utility: compelling features for AdS/CFT.

Today: non-universal properties.
Demonstrate that there are different classes, and their features challenge the lore of AdS/CFT.

Universal Aspects

All symmetric product orbifolds satisfy:

- Correlation functions comply with large-N factorization.
- Hawking-Page transition at large-N.
[Keller 2011; Hartman, Keller, Stoica 2014; Benjamin et.al. 2015]
- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.
[Keller 2011]

$$
d_{\text {all }}(\Delta) \sim e^{2 \pi \mathrm{~b} \Delta} \text { where } \Delta \gg 1, \Delta \sim O\left(N^{0}\right) \text { and } b \sim O\left(N^{0}\right) \quad \operatorname{Sym}^{N}(C)=\frac{C^{\otimes N}}{S_{N}}
$$

Universal Aspects

All symmetric product orbifolds satisfy:

- Correlation functions comply with large-N factorization.
- Hawking-Page transition at large-N.
- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

$$
d_{\text {all }}(\Delta) \sim e^{2 \pi \mathrm{~b} \Delta} \text { where } \Delta \gg 1, \Delta \sim O\left(N^{0}\right) \text { and } b \sim O\left(N^{0}\right) \quad \operatorname{Sym}^{N}(C)=\frac{C^{\otimes N}}{S_{N}}
$$

Universal Aspects

All symmetric product orbifolds satisfy:

- Correlation functions comply with large-N factorization.

- Universal Hagedorn growth of light states.

AdS/CFT interpretation: Dual of $\operatorname{Sym}^{N}(C)$ looks like

$$
\operatorname{Sym}^{N}(C)=\frac{C^{\otimes N}}{S_{N}}
$$ a tensionless string theory (or higher spin gravity).

- Higher spin currents due to orbifold structure.
- Universal Hagedorn growth of light states.

Question: Which $S^{S y}{ }^{N}(C)$ could admit in their moduli space a dual supergravity point?
Strategy: Impose necessary conditions. Identify which Sym $^{N}(C)$ comply with them.

Some requirements:

- Large-N: $c=\frac{3 \ell}{2 G_{N}} \gg 1$
- Sparse spectrum
- Large gap spectrum

At large-N, classify them according to:

- Moduli (deformation)
- BPS spectrum

Moduli space: set of exactly marginal deformations

Neccesary conditions

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- Criterion 2: Sparseness condition on the elliptic genera (index that captures $1 / 4-\mathrm{BPS}$ states).

Based on these two criteria, we will classify $S^{S y m}(C)$ theories, and label them as

Neccesary conditions

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- Criterion 2: Sparseness condition on the elliptic genera (index that captures $1 / 4$-BPS states).

1. We proved that both criteria (independently) imply that seed theory must have

$$
1 \leq c_{0} \leq 6
$$

Neccesary conditions

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- Criterion 2: Sparseness condition on the elliptic genera (index that captures $1 / 4$-BPS states).

1. We proved that both criteria (independently) imply that seed theory must have

$$
1 \leq c_{0} \leq 6
$$

2. Criterion 2 can be done systematically and is exhaustive.

Neccesary conditions

- Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).
- Criterion 2: Sparseness condition on the elliptic genera (index that captures $1 / 4$-BPS states).

1. We proved that both criteria (independently) imply that seed theory must have

$$
1 \leq c_{0} \leq 6
$$

2. Criterion 2 can be done systematically and is exhaustive.
3. If Criterion 2 is satisfied, we proved that one always gets

$$
d_{\frac{1}{4} B P S}(\Delta) \sim e^{\sqrt{\Delta}} \text { where } \Delta \gg 1, \Delta \sim O\left(N^{0}\right)
$$

Classification

Type I: Both criteria

Type II:
Only criterion 1

Type III: Neither criteria

Type IV: Only criterion 2

Needles in a haystack.
\rightarrow Comply with necessary conditions compatible with a holographic CFT.
\rightarrow Strange and counter-intuitive.
Moduli exists, but Hagedorn behavior persists.

Generic, most abundant.
They will never lead to a supergravity point in moduli space.

Unicorns.
No unitary example yet. Modular invariance does not rule it out.

Classification

Summary

Summary

Comments:

- Only consider CFTs that are unitary and compact.
- Assume that the elliptic genus does not vanish.
- DID5 on K3 sits at $c_{0}=6$.
- Search between $1 \leq c_{0}<3$ is exhaustive: $\mathrm{N}=2$ Minimal Models.
- Search between $3 \leq c_{0} \leq 6$ is not exhaustive (but systematic).

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted
A_{2}	1	1	28	1 twist 5,1 twist 7
A_{3}	2	3	26	1 twist 3,1 twist 4,1 twist 5
A_{5}	4	9	24	1 twist 2,1 twist 3,1 twist 4
A_{k+1}	odd, ≥ 3	$P(k+2)-2$	9	1 twist 3
A_{k+1}	even, ≥ 6	$P(k+2)-2$	$10+\sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2,1 twist 3
D_{4}	4	6	20	1 twist 2,2 twist 3,1 twist 4
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \geq 8$	$P\left(\frac{k}{2}+1\right)+P\left(\frac{k}{4}+1\right)$	$8+\sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2,1 twist 3
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \geq 6$	$P\left(\frac{k}{2}+1\right)$	7	1 twist 3
E_{6}	10	4	5	1 twist 2
E_{7}	16	6	5	1 twist 2
E_{8}	28	6	5	1 twist 2

N=2 Virasoro Minimal Models
$c_{0}=\frac{3 k}{k+2}<3$
where $k=1,2, \ldots$

- $c=\frac{3 \ell}{2 G_{N}} \gg 1$
- Few states
- ...

At large-N, classify them according to:

- Moduli (deformation): single trace+twisted
- Sparse BPS spectrum

Moduli space: set of exactly marginal deformations

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted
A_{2}	1	1	28	1 twist 5,1 twist 7
A_{3}	2	3	26	1 twist 3,1 twist 4,1 twist 5
A_{5}	4	9	24	1 twist 2,1 twist 3,1 twist 4
A_{k+1}	odd, ≥ 3	$P(k+2)-2$	9	1 twist 3
A_{k+1}	even, ≥ 6	$P(k+2)-2$	$10+\sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2,1 twist 3
D_{4}	4	6	20	1 twist 2,2 twist 3,1 twist 4
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \geq 8$	$P\left(\frac{k}{2}+1\right)+P\left(\frac{k}{4}+1\right)$	$8+\sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2,1 twist 3
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \geq 6$	$P\left(\frac{k}{2}+1\right)$	7	1 twist 3
E_{6}	10	4	5	1 twist 2
E_{7}	16	6	5	1 twist 2
E_{8}	28	6	5	1 twist 2

Responsible of lifting most states.
Breaks higher spin symmetry

Anomalous dimension for spin-2

k	$c=\frac{3 k}{k+2}$	n	$\mu_{(2)}$
1	1	5	-
		7	
2	$\frac{3}{2}$	3	$\frac{20 \pi^{2} \lambda^{2}(3 N-2)}{27(N-1)}$
		4	$\frac{187 \pi^{2} \lambda^{2}(3 N-2)}{256(N-1)}$
		5	$\frac{4 \pi^{2} \lambda^{2}(3 N-2)}{5(N-1)}$
3	$\frac{9}{5}$	3	$\frac{44 \pi^{2} \lambda^{2}(9 N-5)}{243(N-1)}$
4	2	2	$\frac{39 \pi^{2} \lambda^{2}(2 N-1)}{64(N-1)}$
		3	$\frac{19 \pi^{2} \lambda^{2}(2 N-1)}{27(N-1)}$
		4	$\frac{207 \pi^{2} \lambda^{2}(2 N-1)}{256(N-1)}$
5, 6,	$2<c<3$	3	$\frac{4 \pi^{2} \lambda^{2}\left(c^{2}+12 c-9\right)(c N-1)}{27 c^{2}(c-1)(N-1)}$
6, 8,	$2<c<3$	2	$\frac{3 \pi^{2} \lambda^{2}(24+c)(c N-1)}{64 c(c-1)(N-1)}$

$$
\left\langle\mathbb{O}_{a}(z) \mathbb{O}_{a}\left(z^{\prime}\right)\right\rangle_{\lambda}=\frac{1}{\left(z-z^{\prime}\right)^{2\left(h+\mu_{a}(\lambda)\right)}\left(\bar{z}-\bar{z}^{\prime}\right)^{2\left(\bar{h}+\bar{\mu}_{a}(\lambda)\right)}}
$$

- Sensitivity on the twist and central charge.
- Still, currents are lifting. Good sign!

$$
\begin{aligned}
W_{2}(z) & =T(z)-\frac{3}{2}(J J)(z)+\frac{3(c N-1)}{2 c(N-1)} \sum_{i \neq j}^{N} J^{(i)}(z) J^{(j)}(z) \\
& =T(z)+\frac{3(c-1)}{2 c(N-1)}(J J)(z)-\frac{3(c N-1)}{2 c(N-1)} \sum_{i=1}^{N}\left(J^{(i)} J^{(i)}\right)(z) .
\end{aligned}
$$

Examples of theories where the seed has $c_{0}=5$

Comparisson

- Evaluated anomalous dimension of several holomorphic operators (currents).
- Type I and II theories exhibit no difference at leading order in perturbation theory.
- What is the key feature that guarantees a supergravity point in moduli space?

Type I: Examples

Series	k	untwisted moduli	twisted moduli	single trace twisted
A_{2}	1	1	28	1 twist 5,1 twist 7
A_{3}	2	3	26	1 twist 3,1 twist 4,1 twist 5
A_{5}	4	9	24	1 twist 2,1 twist 3,1 twist 4
A_{k+1}	odd, ≥ 3	$P(k+2)-2$	9	1 twist 3
A_{k+1}	even, ≥ 6	$P(k+2)-2$	$10+\sum_{r=1}^{\frac{k}{2}+2} P(r)$	1 twist 2,1 twist 3
D_{4}	4	6	20	1 twist 2,2 twist 3,1 twist 4
$D_{\frac{k}{2}+2}$	$0 \bmod 4, \geq 8$	$P\left(\frac{k}{2}+1\right)+P\left(\frac{k}{4}+1\right)$	$8+\sum_{r=1}^{\frac{k}{4}+1} P(r)$	1 twist 2,1 twist 3
$D_{\frac{k}{2}+2}$	$2 \bmod 4, \geq 6$	$P\left(\frac{k}{2}+1\right)$	7	1 twist 3
E_{6}	10	4	5	1 twist 2
E_{7}	16	6	5	1 twist 2
E_{8}	28	6	5	1 twist 2

Multi-trace deformations.
Explicit example of CFT with these BPS deformations.

Outlook

Quantify the space of type I theories:

- Different from known examples
- Systematic and tractable
- Infinite family
- New possibilities in AdS/CFT

Gravitational
heory

Type I Sym ${ }^{N}$ (C)
Conditions:

- Large-N
- Sparse elliptic genera
- Moduli

Some requirements:

- Large-N
- Sparse spectrum
- Large gap spectrum
- Which CFTs capture classical (geometric) properties of gravity?
- What are possible theories of quantum gravity that can be designed?
- What are the materials needed to assemble them?

Next steps:

- String theory and supergravity description.
- Heavy states: contrast black holes among type I, II and III.
- Effects of multi-trace deformation (Alex's talk Thursday)
- Type I vs II: lifting of generic operators.

