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New addition to the 1D family

Electrons in quantum wire Atoms in optical lattice (1D tubes) 

Recent cold atoms experiments has brought us 

New 1D systems;
Known 1D models in new parameter regimes;
New theoretical challenges.

I will be very specific and focus only on one example: the equilibrium properties of 1D 
Fermi gases with attractive interaction and spin imbalance.

atomcool.rice.edu
www.sp.phy.cam.ac.uk/~SiGe/

http://www.sp.phy.cam.ac.uk/~SiGe/
http://www.sp.phy.cam.ac.uk/~SiGe/


Crossed beam optical trap                  2D lattice array  

Motivation: the Rice experiment

Spin mixtures of 6Li atoms trapped in an array of 1D tubes.

Talk by Prof. Hulet on Monday.                       Liao et al, Nature 467, 567 (2010)
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Spin-imbalance in a one-dimensional Fermi gas
Yean-an Liao1*, Ann Sophie C. Rittner1*, Tobias Paprotta1, Wenhui Li1,3, Guthrie B. Partridge1{, Randall G. Hulet1, Stefan K. Baur2

& Erich J. Mueller2

Superconductivity andmagnetismgenerally donot coexist. Changing
the relative number of up and down spin electrons disrupts the basic
mechanismofsuperconductivity,whereatomsofoppositemomentum
and spin formCooper pairs. Nearly forty years ago Fulde and Ferrell1

and Larkin and Ovchinnikov2 (FFLO) proposed an exotic pairing
mechanism in which magnetism is accommodated by the formation
ofpairswith finitemomentum.Despite intense theoretical andexperi-
mental efforts, however, polarized superconductivity remains largely
elusive3. Unlike the three-dimensional (3D) case, theories predict that
inonedimension(1D)astatewithFFLOcorrelationsoccupiesamajor
part of the phase diagram4–12. Here we report experimental measure-
ments of density profiles of a two-spinmixture of ultracold 6Li atoms
trapped in an array of 1D tubes (a systemanalogous to electrons in 1D
wires). At finite spin imbalance, the system phase separates with an
inverted phase profile, as compared to the 3D case. In 1D, we find a
partially polarized core surroundedbywingswhich, depending on the
degreeof polarization, are composedof either a completely pairedor a
fullypolarizedFermigas.Ourworkpaves thewaytodirectobservation
and characterization of FFLO pairing.
The FFLO states are perhaps the most interesting of a number of

exotic polarized superconducting phases proposed in the past 40 years.
In the original concept of Fulde and Ferrell, Cooper pairs form with
finite centre-of-mass momentum1. Larkin and Ovchinnikov proposed
a related model in which the superconducting order parameter oscil-
lates in space2. These two ideas are closely related, because the oscil-
lating order parameter may be interpreted as an interference pattern
between condensates with opposite centre-of-mass momenta. The
spin density oscillates in the Larkin and Ovchinnikov model, leading
to a build-up of polarization in the nodes of the superconducting order
parameter. Thus, the Larkin and Ovchinnikov state can be considered
a form of microscale phase separation with alternating superfluid and
polarized normal regions. By including more and more momenta,
subsequent theorists were able to evaluate the stability of ever more
complicated spatial structures3.
Previous studies of superfluidity in fermionic atoms show that ultra-

cold atoms form a powerful tool with which to investigate the emer-
gent properties of interacting systems ofmany particles. Although they
are largely analogous to an electronic superconductor, the atomic
systems feature tunable interactions. This extra degree of control has
led to a number of unique experiments and conceptual advances.
Furthermore, the absence of spin relaxation enables us to spin-polarize
the atoms to explore the interplaybetweenmagnetismand superfluidity,
with the potential to observe the FFLO phase. Recent calculations indi-
cate that if a FFLOphase exists in 3D trapped gases, it will occupy a very
small volume in parameter space13,14. Experiments in 3D and in the
strongly interacting limit show that the gas phase separates with an
unpolarized superfluid core surrounded by a polarized shell15–19, with
no evidence for the FFLOphase.Here, we study a polarized Fermi gas in
1D, forwhich theorypredicts that a large fractionof thephasediagram is
occupied by an FFLO-like phase (see Fig. 1a)4–12. In this 1D setting, the
physics should be closest to that described by Larkin and Ovchinnikov,

where an oscillating superfluid order parameter coexists with a spin-
density wave. Owing to fluctuations, the order will be algebraic rather
than long-range. The increased stability of FFLO-like phases in 1D can
beunderstood as a ‘nesting’ effect, inwhich a singlewavevector connects
all points on the Fermi surface, allowing all atoms on the Fermi surface
to participate in finite momentum pairing, whereas in 3D, only a small
fraction of these atoms are able to do so. Similar enhancements are
predicted for systems of lattice fermions and quasi-1D geometries10,20.
Our work complements studies of astrophysical objects3 and solid-

state systems. Like our current experiment, the solid-state experiments
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Figure 1 | Theoretical T5 0 phase diagram (adapted from ref. 6).

a, Schematicwith m~
1
2
(m1zm2) versus h~

1
2
(m1{m2) , showing three phases:

fully paired (green), fully polarized (blue), and partially polarized (yellow),
which is predicted to be FFLO. In a trap,m decreases from the centre to the edge,
while h is constant throughout the tube. The vertical arrows show two possible
paths from the trap centre to edge: The partially polarized centre is surrounded
either by a fully paired superfluid phase at low h or by a fully polarized phase at
high h. At a critical value of h, corresponding to a polarization Pc, the whole
cloud is partially polarized. b, Phase diagram of the 1D trapped gas with
infinitely strong point interactions. The scaled axial radius is defined in the Fig.
3 caption. The red line corresponds to the scaled radius of the density
difference, and the blue line is the scaled radius of state | 2æ.
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    1. We focus on attractive interaction.

    2. Spin up and down fermions can have different chemical potentials, say

                    define (the average) chemical potential 
                      
                    and the effective magnetic field

        In canonical ensemble, this corresponds to having total density
 
        magnetization (spin imbalance)                              and polarization    

The Gaudin-Yang model

One-dimensional Fermi gas with contact interaction described by Gaudin-Yang model
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We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model)
with spin imbalance. The infinite number of coupled thermodynamic Bethe ansatz equations are
analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations
become universal and exact in the experimental regime of strong interaction and relatively low
temperature. Using the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps. We propose a practical
two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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with spin imbalance. The infinite number of coupled thermodynamic Bethe ansatz equations are
analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations
become universal and exact in the experimental regime of strong interaction and relatively low
temperature. Using the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps. We propose a practical
two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model)
with spin imbalance. The infinite number of coupled thermodynamic Bethe ansatz equations are
analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations
become universal and exact in the experimental regime of strong interaction and relatively low
temperature. Using the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps. We propose a practical
two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model)
with spin imbalance. The infinite number of coupled thermodynamic Bethe ansatz equations are
analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations
become universal and exact in the experimental regime of strong interaction and relatively low
temperature. Using the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps. We propose a practical
two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so
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We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model)
with spin imbalance. The infinite number of coupled thermodynamic Bethe ansatz equations are
analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations
become universal and exact in the experimental regime of strong interaction and relatively low
temperature. Using the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps. We propose a practical
two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

Alkali fermionic atoms at tens of nano-Kelvin are a re-
markable addition to correlated quantum matter. Their
interaction is unprecedentedly tunable from attractive to
repulsive infinity. This allows, for instance, the observa-
tion of universal properties of Fermi superfluids at uni-
tarity. Recent developments [1, 2] provide imbalanced
populations of cold atoms in different hyperfine (spin)
states, adding a new dimension in the low-temperature
phase diagram [3]. In low dimensions, such attractive
Fermi gases with spin imbalance give rise to a series of
very interesting phases. For example, it was suggested
that the quasi one-dimensional imbalanced Fermi gas,
i.e., a weakly coupled array of one-dimensional (1D) at-
tractive Fermi gases, gives a better chance to observe a
long-sought crystalline superfluid, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [4, 5, 6].

The realization of 1D ultracold atomic gases [7, 8] pro-
vides a new setting to experimentally test exactly solved
models of interacting fermions. In particular, spin imbal-
ance enables us to reach parameter regimes impossible in
solid state (such as quantum wires) to study exotic quan-
tum liquids outside the paradigm of a spin-charge sepa-
rated Tomonaga-Luttinger liquid (TLL). Since their ther-
modynamics can be computed exactly, one-dimensional
ultracold Fermi gases can also serve as a calibration refer-
ence system to measure the thermodynamics of strongly
interacting Fermi gases in higher dimensions.

Understanding the thermodynamic properties of
such integrable models at finite temperature presents
formidable challenges. In principle the thermodynamic
Bethe ansatz (TBA) [9] gives exact results for the ther-
modynamics. However, it requires numerically solving an
infinite number of coupled nonlinear integral equations,
which is cumbersome and makes it practically unsuit-
able to compare with experiments [10]. On the other
hand, complementary numerical methods such as Quan-
tum Monte Carlo are limited to small system sizes [11].

In this paper, we give a new formulation of the exact
thermodynamics of a 1D Fermi gas with contact attrac-

tion, the Gaudin-Yang model [12, 13], which is now ac-
cessible in cold atom experiments [7, 8]. Based on the
analytical analysis of the TBA equations, we derive a
simple, complete set of algebraic equations which yield
all thermodynamic quantities and show that they are
asymptotically exact and universal in the physically in-
teresting regime. Our approach can be applied to a wide
range of Bethe ansatz integrable many-body systems. As
an application, we propose a two-stage scheme to achieve
accurate thermometry for trapped 1D Fermi gases.

Model and strong coupling limit. In the on-going ex-
periments, for instance, at Rice University [8], a system
of parallel 1D gas “tubes” is prepared by loading alkali
fermionic atoms (e.g., 6Li in hyperfine states |F = 1/2,
mF = ±1/2〉) in a square optical lattice. The trans-
verse dynamics is suppressed by deep lattice potentials,
and the motion is restricted along the tube axis x. The
Fermi gas confined in each tube is then well described by
the Gaudin-Yang model [12, 13],

H = −

∫

dx
∑

σ=↑,↓

ψ†
σ(x)

[

!2

2m

∂2

∂x2
+ µσ

]

ψσ(x)

− g

∫

dxψ†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x). (1)

The two hyperfine species with equal mass m are labeled
with spin up and down respectively. g > 0 is the contact
attractive interaction. In general, the chemical poten-
tials for the spin up and down fermions are different,
say µ↑ > µ↓. Following convention, we define the chem-
ical potential µ = (µ↑ + µ↓)/2, the effective magnetic
field h = (µ↑ − µ↓)/2, the total density n = n↑ + n↓,
the magnetization M = n↑ − n↓, and the polarization
p = M/n. There are two length scales in this problem:
the 1D scattering length a1 = 2!2/(mg) characterizing
the interaction strength g, and the inter-particle spac-
ing 1/n. Their ratio defines the dimensionless interaction
strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 # 1/n, so

M. Gaudin, Phys. Lett. A 24 (1967);  C. N. Yang, PRL 19 (1967).
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strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 ! 1/n, so
γ " 1. We will focus on this strong coupling limit where
the binding energy εB = !2/(ma2

1) is much larger than
the chemical potentials.

The Gaudin-Yang model is exactly solvable by means
of the Bethe ansatz [12, 13]. Its zero temperature phase
diagram has been worked out theoretically [14, 15, 16].
There are three phases: the fully paired (BCS) phase
which is a quasi-condensate with zero polarization, the
fully polarized (normal) phase with P = 1, and the par-
tially polarized (1D FFLO) phase where 0 < P < 1 and
the pair correlation function oscillates in space [5]. For
given µ, the FFLO phase is separated from the BCS
phase and the normal phase by two quantum critical
points at h = hc1 and hc2, respectively. An effective field
theory of the 1D FFLO phase, recently established by
two of us, shows that it is a novel type of two-component
TLL, each gapless normal mode being a hybridization of
spin and charge [5].

Here, based on the exact Bethe ansatz solution, we
demonstrate that, in the low-energy limit the 1D FFLO
is equivalent to two coupled gases of spinless fermions.
Due to strong attraction, any minority (spin ↓) fermion
would like to pair up with a majority (spin ↑) fermion.
Then, roughly speaking, the FFLO phase can be viewed
as a mixture of tightly bound pairs (labeled by subscript
b) and unpaired leftover fermions (labeled by subscript
u) [14, 15, 16]. By a transmutation in statistics, the
bosonic pair degree of freedom is equivalent to a gas of
spinless fermions, analogous to the well known case of
Tonks-Girardeau gas of hard-core bosons. The two gases
are coupled by residue scattering, so the effective chemi-
cal potential of each gas, µb (µu), depends on the Fermi
pressure of the other gas, pu (pb).

Exact thermodynamics. Our analysis begins with rec-
ognizing the separation of energy scales in the strong
coupling limit. At very low temperatures, T ! µu, µb

(Boltzmann’s constant kB = 1), the thermodynamics of
the 1D FFLO phase is governed by the linearly dispersing
phonon modes, i.e., the long wavelength density fluctua-
tions of the two weakly coupled gases. Using the effective
field theory and the standard conformal mapping [17, 18],
we find the low temperature thermodynamic potential
(per unit length),

GFT (T ) = G0 −
π

6!
(

1

vb
+

1

vu
)T 2 + ... . (2)

The system has two gapless excitations, which are the
long wavelength density fluctuations (phonons) of the
two gases. Their group velocities are the respective
Fermi velocities, vb = (1 − P )[1 + (1 + 3P )/γ]vF /4 and
vu = P [1 + 4(1 − P )/γ]vF , with vF = !nπ/m [16]. At
higher temperatures, T ∼ µb or µu, the particle and hole
excitations are no longer restricted near the Fermi sur-
face. Their dispersion undergoes a crossover from rela-

tivistic (linear in k) to non-relativistic (k2). In particular,
this happens in the vicinity of quantum critical points,
where either µb or µu becomes vanishingly small. The
conformal invariance is now violated due to the lack of
Lorentz invariance. Consequently, Eq. (2) becomes inad-
equate. Nevertheless, we shall show that the system is
still equivalent to two weakly coupled gases despite the
lack of conformal invariance.

At even higher temperature, T ∼ εB, there is enough
thermal energy to break pairs. Similarly, for T ∼ 2h, a
leftover fermion can flip its spin to be anti-parallel to the
external field h due to thermal excitation. However, in
this paper, we focus on the physically interesting regime
of low temperatures and strong coupling,

T ! εB, 2h and γ " 1 . (3)

Our key observation is that the TBA equations can be
greatly simplified in the regime (3) due to the suppres-
sion of spin fluctuations. Mathematically, the infinite
set of integral equations for spin rapidities is analytically
tractable for strong attraction and high magnetic field.
Their overall effect can be absorbed into a renormaliza-
tion of µu, which becomes exponentially small at low T
so the feedback effect to the spin rapidity solution can
be safely neglected. This leads to our central result—
computing the thermodynamics at finite temperatures
only requires solving the coupled algebraic equations:

µb = µ +
εB

2
−

a1

4
pb − a1pu, (4)

µu = µ + T ln(2 cosh
h

T
) − a1pb −

a1

4
pusech2 h

T
, (5)

pb = −

√

m

π!2
T 3/2Li 3

2

(−e2µb/T ), (6)

pu = −

√

m

2π!2
T 3/2Li 3

2

(−eµu/T ). (7)

Here, Lis(x) is the standard polylogarithm function as a
result of the Fermi-Dirac integral. As we shall focus on
the regime (3), we can further neglect the exponentially
small contributions from the spin fluctuation. Hence,
Eq. (5) is replaced by

µu = µ + h − a1pb. (8)

The thermodynamic potential (per unit length) G is
then given by G = −p = −(pb + pu), where p is the
pressure. From G , it is straightforward to find the den-
sity n = −∂G /∂µ, the magnetization M = −∂G /∂h,
the entropy s = −∂G /∂T , and the compressibility κ =
∂n/∂µ. For these purposes, it is convenient to first
take the corresponding derivative of Eqs. (4)–(7), use
∂Lis(−ex)/∂x = Lis−1(−ex), and then solve the re-
sulting linear equations. For example, defining α =
−(mT/4π!2)1/2Li1/2(−e2µb/T ), β = −(mT/2π!2)1/2

Li1/2(−eµu/T ) and c = 1 + a1α − 4a2
1αβ, we have

n = (4α + β − 7a1αβ)/c, M = β(1 − 3a1α)/c. (9)

strong coupling limit

γ � 1, i.e., �B � µ

at “low” temperatures

Experiments are in the

The GY model is exactly solvable by Bethe ansatz both at zero and finite T.
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FIG. 1: (Color online) Left panel: Comparison of the tem-
perature dependence of the pressure p obtained by numeri-
cally solving the full TBA equations (circles) and simplified
Eqs. (4)–(7) (solid line). The entropy s(T ) (green dashed
line) is linear in T at low temperatures, agreeing well with
sF T (blue dotted line) as predicted by the low energy effec-
tive field theory. µ = −0.95 and h = 1.1. The energy and
length units are εB/2 and a1, respectively. Right panel: The
schematic finite-temperature “phase diagram” in the regime
Eq. (3).

A detailed analysis of the TBA equations together with
the derivation of Eqs. (4)–(8) will be presented elsewhere.

For given (µ, h, T ), equations (4)-(8) can be solved by
simple iteration by treating a1pb as being small compared
to µb and similarly a1pu as to µu. These equations free us
from the requirement of solving the full TBA equations,
which is a much harder task [10]. To test the accuracy
of our new approach, we examined the pressure p = −G .
In Fig. 1, we compare results from Eqs. (4)–(8) (solid
lines) and that obtained by numerically solving the full
TBA equations (circles). We observe that indeed only
at high temperature, T ∼ εB/2, the deviation from the
exact result becomes significant. Thus the validity of our
new formulation is established.

In the low temperature limit T # µb, µu we calculate
the free energy using a Sommerfeld expansion based on
Eqs. (4)–(5). Indeed, we find the thermodynamic poten-
tial reproduces the field theory result [Eq. (2)] and the
corresponding entropy (per unit length)

sFT =
π

3!
(

1

vb
+

1

vu
)T + ... . (10)

The entropy s(T ) obtained from Eqs. (4)–(7) is shown
in Fig. 1 together with the low energy effective field
theory result sFT . s(T ) is clearly linear in T at low
temperatures and agrees well with sFT . The deviation
from the linear T dependence marks a universal crossover
around T ∗ from relativistic to non-relativistic dispersion
for particle- and hole-like excitations. This leads to a
minima in the magnetization as well as in the densities
(not shown in Fig. 1) at roughly the same temperature
scale T ∗. Analogous crossover phenomena were discussed
in the magnetization curve for gapped spin-1 Heisenberg
chains [19] and experimentally observed in two-leg spin
ladders [20].

The gross features of our findings are summarized in

the schematic “phase diagram” in Fig. 1. There is no
phase transition at finite temperature but only crossovers
between different regimes. At low temperatures, the
BCS, normal, and FFLO phase become the relativistic
TLL of bound pairs (TLLb), unpaired fermions (TLLu),
and two-component TLL (TLL2) respectively. The TLL
description of the FFLO phase breaks down at crossover
temperature T ∗ where the dispersion of either bound
pairs or leftover fermions becomes non-relativistic. In
particular, in the vicinity of the quantum critical points
(hc1 and hc2), the system crosses over to the “quantum
critical (QC) regime”. The other crossover (dash-dot)
lines roughly correspond to the excitation gap for un-
paired fermions or bound pairs.

Application: two-stage thermometry. Now we use these
formulas to study the strongly interacting imbalanced
Fermi gas inside a 1D harmonic trap of frequency ω. Ac-
cording to the local density approximation, the chemical
potential varies in space as µ(x) = µ0 − 1

2
mω2x2, with

x = 0 corresponding to the center of the trap, while
the magnetic field h stays constant. Thus, distinct zero
temperature phases are realized at different locations in
the trap, giving rise to particular spatial structures in
the in-situ density images. A central challenge in inter-
preting the density distribution data from experiments is
how to determine (T, µ0, h), none of which seems to be
accurately measurable so far.

We use our results to propose a two-stage scheme to
accurately determine the parameters T , µ0, and h from
the density profiles. Stage 1: estimate the values of these
parameters using the density profiles at the phase bound-
ary and at the edge of the gas cloud. Stage 2: using the
estimations as guess inputs, obtain (T, µ0, h) to high ac-
curacy by a direct three-parameter fit of the whole den-
sity profile using Eq. (9). Previously, thermal tails at the
outer wing of the density cloud have been used to extract
the temperature of atomic gases in 3D traps based on
the observation that the gas is essentially non-interacting
there [21, 22]. Here, by contrast, the outer wing may still
interact strongly (e.g., it might be a Tonks-Girardeau
gas). Moreover, our method utilizes densities not only at
the edge of the cloud, but also at the interface. We now
illustrate how to accomplish the goals of Stage 1 for the
cases of low and high total polarization.

For low polarization, the trap consists of a partially
polarized (FFLO) core and a fully paired (BCS) wing,
which at strong coupling is a Tonks-Girardeau gas. Rep-
resentative finite T density distributions are shown in
the left panel of Fig. 2. At T = 0, the magnetiza-
tion M drops to zero at the FFLO-BCS phase bound-
ary µ = −h + n3π2a1/24 [16], while n↑ and n↓ vanish
at µ = −εB/2. Finite temperature leads to thermal
tails for all three. The compressibility κ is also shown
in Fig. 2, which develops a peak near the edge of the
cloud. At T = 0, κ diverges as ∼ 1/

√

µ + εB/2 as µ ap-
proaches −εB/2. At finite temperature, this divergence

typically involve highly anisotropicmaterials—made up either ofweakly
coupled two-dimensional (2D)planes or 1Dwires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.
Details of our experimental procedures are given in the Methods

and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formedwith a 2D optical lattice24. The
lattice potential is given byV5V0cos

2(kx)1V0cos
2(ky),with k5 2p/l

and V05 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to bemet for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF5N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
andvz andvH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF. t is equivalent
to specifying that the Fermi surface is 1D, and the condition T. t
makes the inter-tube coupling incoherent.All conditions arewell satisfied
in our experiment: the tube aspect ratio vH/vz5 1,000 is larger than
N1< 120 for the central tube; and t/kB< 17nK is much smaller than
both eF/kB< 1.2mK and T< 175nK.
We tune an external magnetic field to the Bardeen–Cooper–

Schrieffer (BCS) side (890G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(seeMethods).Assuminghydrostatic equilibrium, the 1Dspatial density
profiles n1,2(z) can be expressed in terms of m5m02V(z), and h5h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N5N11N2 and polarization P5 (N12N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z)2n2(z)5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z)5 0, as shown in Fig. 1b.
Figure 2 shows axial density profiles of state j1æ, state j2æ, and their

differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)

1/2az, where N0 is the total number of
particles in the central tube and az5 (B/mvz)

K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasingP (50.055), the phase boundarymoves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and theminority state ( | 2æ) axial density (blue circles) compared with a 175nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes,N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P< 0.136 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P< 0.17.
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What is the nature of the “1D FFLO” phase?

∆(x)

In 1D, quantum fluctuations will melt any crystalline structure of !. So 1D FFLO 
has to be a quantum critical phase with only algebraic order.

What kind of quantum liquid is it? 
    (Neither a Luther-Emery liquid nor a spin-charge separated Luttinger liquid)

What are the elementary excitations?

What are the (analytic form of) correlation functions at zero and finite T?

Bethe ansatz alone cannot answer all these questions. We need an effective field  
theory [in the spirit of Haldane, J. Phys. A 15, 507 (82)] to describe the new 1D quantum fluid.



spin-charge mixing (marginal)

effective magnetic field

sine-Gordon

For weak attraction, linearize the spectrum at two Fermi surfaces,

Bosonization of GY model



Non-perturbative bosonization

8

Repulsive Hubbard model H’U

Two-component Luttinger HTL

Penc & Solyom (93)

1) Bosonization

Attractive Hubbard model HU

Particle-hole transformation

Bethe ansatz

Continuum limit

Gaudin-Yang model  HGY ,

Lattice regularization

!"#$%$&'()*"("++",)$%"(+$"-.()*"/#0

Conformal 
field theory

Correlation functionsFree energy

Frahm & Korepin (91)

2) Diagonalization
3) P-h transform back

Affleck (86); Blote et al (86)

Microscopic Hamiltonian Long wave length, low energy description

Bethe ansatz

Field-theory    

H. Frahm, T. Vekua (08)
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1T

2

1 Z Z
2

1

Two gapless excitations (normal modes). Each is admixture of spin and charge 
excitations. The degree of mixing is described by the dressed charge matrix Z.

Coefficients/parameters (ui , Zij) calculated from the Bethe ansatz.

The theory applies to arbitrary interaction strength, and any 0<p<1.

Correlation functions and thermodynamics can be computed easily.

1D FFLO is a two-component Luttinger liquid with spin-charge mixing,

Microscopic Hamiltonian Long wavelength, low energy description
Effective field theory of 1D FFLO

Kun Yang developed a field theory for 1D superconductor in magnetic field, Phys. Rev. B 63, 140511(R) (2001), 
where spin-charge mixing was neglected.



q� = kf,↑ − kf,↓

δ↑

δ∆

Correlation functions

The effective field theory enables us to compute the single particle propagator and 
pair correlation function analytically: 

5

The Luttinger parameters in the g-ology notation, g̃, are
given in terms of {ui, Zij} by Eq. (6.12) to (6.17) in Ref.
38. For example,

vf,↑ + g̃4,↑ − g̃2,↑ = u1(zcc − Zsc)
2 + u2(Zcs − Zss)

2,

vf,↑ + g̃4,↑ + g̃2,↑ =
u1Z2

ss + u2Z2
sc

(ZccZss − ZcsZsc)2
.

The low energy effective theory H ′
TL yields the same fi-

nite size spectrum and correlation functions as the orig-
inal microscopic model H ′

U . It is instructive to compare
this nonperturbative result with that obtained by weak
coupling bosonization, HB in Eq., (7).

(V) Finally we particle-hole transform H ′
TL back to ob-

tain the effective Hamiltonian HTL for HU . In bosonized
form, HTL is obtained from H ′

TL by replacement φ↑ →
−φ↑ and θ↑ → −θ↑. Since HTL is quadratic, we diag-
onalize it by a canonical transformation using matrix Z̄
[31, 32]. The end result is Eq. (8).

V. SINGLE PARTICLE AND PAIR
CORRELATION FUNCTIONS

The bosonized effective Hamiltonian Eq. (8) makes it
straightforward to compute the correlation function of
any operator of the form

O(x) = ei[âTφ̂(x)+b̂Tθ̂(x)]

where â and b̂ are arbitrary two-component vectors, and
φ̂T = (φ↑, φ↓), θ̂T = (θ↑, θ↓). Using the relation Eq. (9),
we find that the correlation function 〈O(x)O†(0)〉 has
the asymptotic behavior of x−2δ at zero temperature as
x → ∞. The scaling dimension of O is given by

δ =
1

4
[âTĝ−1â + b̂Tĝb̂].

The charge matrix is defined by ĝ = Z̄−1Ȳ .
We apply this result to compute the single particle

propagator and the singlet pair susceptibility

Gσ(x, τ) = −〈TτψR,σ(x, τ)ψ†
R,σ(0, 0)〉,

χ(x, τ) = −〈Tτ∆(x, τ)∆†(0, 0)〉. (12)

We shall focus on G↑ for the majority spin (↑), since G↓

only has subdominant power law divergence (its scaling
dimension is larger than that of G↑, i.e., δ↓ > δ↑). For
example, from the bosonized representation of fermion
field operator ψR,σ, Eq. (6), we find a = (−1, 0)T and
b = (1, 0)T for G↑. It follows that for x → ∞ at zero
temperature,

G↑(x) ∼
eikf↑x

x2δ↑
, δ↑ = β1 + β2, (13)

χ(x) ∼
eiq!x

x2δ∆
, δ∆ = γ1 + γ2. (14)

The scaling dimensions of the single particle field oper-
ator ψ↑ and pair operator ∆ are directly related to the
dress charge matrix elements that describe the effect of
spin-charge mixing,

β1 =
1

4
[(Z̄11)

2 + (Ȳ11)
2], β2 =

1

4
[(Z̄21)

2 + (Ȳ21)
2];

γ1 =
1

4
[Z2

cc +
Z2

cs

(det Z̄)2
], γ2 =

1

4
[Z2

cs +
Z2

cc

(det Z̄)2
].

(15)

Here Z̄11 denotes the (1,1) element of the matrix Z̄. We
also define the corresponding anomalous dimensions η↑ =
2 − 2δ↑, and η∆ = 2 − 2δ∆.

Eq. (14) is the hallmark of 1D FFLO phase: the s-wave
pair correlation function oscillates in space at the FFLO
wave vector q& = kf,↑−kf,↓ on top of the algebraic decay.
Although it looks similar to Yang’s conclusion based the
spin-charge separated model HY , the present result fully
takes into account the effect of spin-charge mixing and
remains valid for all values of 0 < p < 1. Our results can
also shed more light on the nature of the magnetic field
driven BCS-FFLO transition in 1D. Under a particle-hole
transformation, it is equivalent to the Mott transition of
repulsive Fermi gas in magnetic field (driven by varying
chemical potential). As shown recently by Frahm and
Vekua [32], due to the intrinsic spin-charge coupling, it
is not in the same universality class as the single mode
commensurate-incommensuarate transition.

At finite temperature T , G↑(x, τ) and χ(x, τ) still
factorize due to the decoupling of two normal modes.
After some algebra, we obtain the Fourier component
G0 = G↑(k = kf,↑, ω = 0) (up to a phase factor),

G0 = (2π3αT 2)−1 I1(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2βi

√
ui. (16)

Similarly, χ0 = χ(k = q&, ω = 0) is found to be

χ0 = (2π2αT )−2 I2(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2γi

√
ui. (17)

Here, the dimensionless function I1/2 are defined as

I1(y) =

∫ ∞

−∞
dx

∫ π

0
dt sin t

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−βi ,

I2(y) =

∫ ∞

−∞
dx

∫ π

0
dt

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−γi .

These results will become useful in the RPA calculation
for the quasi-1D systems. Note that the ratio u1/u2 is
not a rapidly changing function of γ. Fig. 1 shows its
value for p = 0.2.

VI. PHASE DIAGRAM OF THE QUASI-1D
SYSTEM AT T = 0.

We now apply the effective theory for single tube to
study the quasi-1D system realized in experiments: a

2

where a⊥ =
√

!/mω⊥ is the oscillator length of the trans-
verse confinement of frequency ω⊥ ! ωx. Let N↑ and
N↓ be the number of spin up and down particles respec-
tively, and N = N↑ + N↓ the total particle number. We
define the linear particle density nL = N/L, the popula-
tion imbalance p = (N↑ − N↓)/N , and the dimensionless
interaction parameter γ = 2/(nLa1D). These are experi-
mentally controllable parameters. Some of these numbers
are listed in Ref. 22. In the above model Hamiltonian,
we have neglected the slowly varying Gaussian trap po-
tential in x direction, V (x) = mω2

xx2/2, and assumed
periodic boundary condition for the system of length L,
as we are interested in the collective behaviors of the pop-
ulation imbalanced gas in the thermodynamic limit. The
effect of the trap can be subsequently taken into account
using local density approximation.

For technical convenience, we also consider a closely
related lattice model, the 1D attractive Hubbard model,

HU = −t
∑

i,σ

(c†i,σci+1,σ + h.c.) − U
∑

i

ni,↑ni,↓, (2)

with linear particle density nL = n/a and population im-
balance p. Here, n = n↑ + n↓ is the particle number per
site (band filling), and a is the lattice spacing. We define
the Fermi wave vector kfσ ≡ πnσ/a for each spin species
σ =↑, ↓, and the FFLO wave vector q" ≡ kf↑ − kf↓. The
Hubbard model can be viewed as the (regularized) lat-
tice version of the continuum Gaudin-Yang model, with
a playing the role of the short distance cutoff. Explicitly,
the Gaudin-Yang model corresponds to HU in the contin-
uum limit, a → 0, for fixed particle numbers and system
length L, i.e., n ' 1. In this limit, the parameters of
HGY are related to those of HU by [23]

m =
!2

2ta2
, g = −Ua, γ =

U

2tn
. (3)

Finally, the experimental setup [24] searching for quasi-
1D FFLO state consists of a 2D square lattice array of
1D tubes, each described by HGY and coupled to its
nearest neighbors by transverse tunneling of amplitude
t⊥,

H⊥ = −t⊥

∫

dx
∑

〈i,j〉,ν,σ

[ψ†
i,ν,σ(x)ψj,ν,σ(x) + h.c.]. (4)

Here ψν=R/L,σ is the fermion field operator for right/left
movers with spin σ =↑, ↓ [25], and 〈i, j〉 labels nearest
neighbor tubes. Also relevant to our discussion is the
intertube Josephson coupling of the form

HJ = −J

∫

dx
∑

〈i,j〉

[∆†
i (x)∆j(x) + h.c.]. (5)

The pair operator is defined as ∆(x) = ψR,↑(x)ψL,↓(x),
and the pair tunneling, J ∝ t2⊥, is generated by sec-
ond order hopping process. Intertube coupling estab-
lishes transverse coherence between tubes and drives the
system through a 1D-to-3D dimensional crossover [16].

III. SPIN-CHARGE MIXING IN AN
IMBALANCED FERMI GAS

We first obtain a low energy effective theory for the
Gaudin-Yang model using standard Abelian bosonization
[25, 26], which is valid for weak interaction (small γ).
We linearize the spectrum of each spin species around its
Fermi points ±kfσ. Note that the two Fermi momenta
differ by δkf = kf↑ − kf↓, since N↑ += N↓. We also
define the average and difference of Fermi velocities, v̄f =
(vf↑+vf↓)/2 and δvf = vf↑−vf↓. We follow the notation
convention of Ref. [25], where the bosonization identity
takes the form

ψR,σ(x) =
UR,σ√
2πα

eikf,σxe−i[φσ−θσ],

ψL,σ(x) =
UL,σ√
2πα

e−ikf,σxei[φσ+θσ]. (6)

Here θσ is the dual field of boson field φσ, UR/L,σ are
the Klein factors, and α is the short distance cutoff. The
bosonized Gaudin-Yang model (1) becomes,

HB =

∫

dx

2π

[

v̄f (∇θc)
2 + v̄+

f (∇φc)
2 + δvf δkf

∇φc√
2

+ v̄f (∇θ̃s)
2 + v̄−f (∇φ̃s)

2 +
√

2v̄−f δkf∇φ̃s

+ δvf (∇θc∇θ̃s + ∇φc∇φ̃s) +
g

πα2
cos(

√
8φ̃s)

]

. (7)

Here the charge and spin field φc/s = (φ↑ ± φ↓)/
√

2 are
defined in the standard way. We have introduced shifted
spin fields

φ̃s = φs − δkfx/
√

2, θ̃s = θs,

and a short hand notation v̄±f = v̄f ± g/π.
For the unpolarized case, p = 0, both δk and δvf van-

ish, so HB is reduced to the sine-Gordon model. With a
negative coefficient (g < 0), the cosine term is relevant.
It is well known that the system, an attractive Fermi gas,
is a Luther-Emery liquid where spin and charge separa-
tion holds: the charge sector is gapless and described by
a Gaussian Hamiltonian and the spin sector is gapped.
The algebraic decay of the s-wave paring susceptibility,
which is most diverging, is determined by the Luttinger
parameter in the charge sector.

Finite population imbalance brings several significant
differences. First, it introduces a linear “source” term for
the (shifted) spin field which acts as an effective magnetic
field,

h =
√

2v̄−f δkf .

But more importantly, it leads to coupling between the
spin and charge sector, described by the density and cur-
rent interaction terms (∇θc∇θ̃s and ∇φc∇φ̃s) of order
δvf in HB . Therefore, Eq. (7) clearly shows that a 1D
attractive Fermi gas with finite p is in general not a spin-
charge separated Luther-Emery liquid.

At T=0 and for                 , we find 

5

The Luttinger parameters in the g-ology notation, g̃, are
given in terms of {ui, Zij} by Eq. (6.12) to (6.17) in Ref.
38. For example,

vf,↑ + g̃4,↑ − g̃2,↑ = u1(zcc − Zsc)
2 + u2(Zcs − Zss)

2,

vf,↑ + g̃4,↑ + g̃2,↑ =
u1Z2

ss + u2Z2
sc

(ZccZss − ZcsZsc)2
.

The low energy effective theory H ′
TL yields the same fi-

nite size spectrum and correlation functions as the orig-
inal microscopic model H ′

U . It is instructive to compare
this nonperturbative result with that obtained by weak
coupling bosonization, HB in Eq., (7).

(V) Finally we particle-hole transform H ′
TL back to ob-

tain the effective Hamiltonian HTL for HU . In bosonized
form, HTL is obtained from H ′

TL by replacement φ↑ →
−φ↑ and θ↑ → −θ↑. Since HTL is quadratic, we diag-
onalize it by a canonical transformation using matrix Z̄
[31, 32]. The end result is Eq. (8).

V. SINGLE PARTICLE AND PAIR
CORRELATION FUNCTIONS

The bosonized effective Hamiltonian Eq. (8) makes it
straightforward to compute the correlation function of
any operator of the form

O(x) = ei[âTφ̂(x)+b̂Tθ̂(x)]

where â and b̂ are arbitrary two-component vectors, and
φ̂T = (φ↑, φ↓), θ̂T = (θ↑, θ↓). Using the relation Eq. (9),
we find that the correlation function 〈O(x)O†(0)〉 has
the asymptotic behavior of x−2δ at zero temperature as
x → ∞. The scaling dimension of O is given by

δ =
1

4
[âTĝ−1â + b̂Tĝb̂].

The charge matrix is defined by ĝ = Z̄−1Ȳ .
We apply this result to compute the single particle

propagator and the singlet pair susceptibility

Gσ(x, τ) = −〈TτψR,σ(x, τ)ψ†
R,σ(0, 0)〉,

χ(x, τ) = −〈Tτ∆(x, τ)∆†(0, 0)〉. (12)

We shall focus on G↑ for the majority spin (↑), since G↓

only has subdominant power law divergence (its scaling
dimension is larger than that of G↑, i.e., δ↓ > δ↑). For
example, from the bosonized representation of fermion
field operator ψR,σ, Eq. (6), we find a = (−1, 0)T and
b = (1, 0)T for G↑. It follows that for x → ∞ at zero
temperature,

G↑(x) ∼
eikf↑x

x2δ↑
, δ↑ = β1 + β2, (13)

χ(x) ∼
eiq!x

x2δ∆
, δ∆ = γ1 + γ2. (14)

The scaling dimensions of the single particle field oper-
ator ψ↑ and pair operator ∆ are directly related to the
dress charge matrix elements that describe the effect of
spin-charge mixing,

β1 =
1

4
[(Z̄11)

2 + (Ȳ11)
2], β2 =

1

4
[(Z̄21)

2 + (Ȳ21)
2];

γ1 =
1

4
[Z2

cc +
Z2

cs

(det Z̄)2
], γ2 =

1

4
[Z2

cs +
Z2

cc

(det Z̄)2
].

(15)

Here Z̄11 denotes the (1,1) element of the matrix Z̄. We
also define the corresponding anomalous dimensions η↑ =
2 − 2δ↑, and η∆ = 2 − 2δ∆.

Eq. (14) is the hallmark of 1D FFLO phase: the s-wave
pair correlation function oscillates in space at the FFLO
wave vector q& = kf,↑−kf,↓ on top of the algebraic decay.
Although it looks similar to Yang’s conclusion based the
spin-charge separated model HY , the present result fully
takes into account the effect of spin-charge mixing and
remains valid for all values of 0 < p < 1. Our results can
also shed more light on the nature of the magnetic field
driven BCS-FFLO transition in 1D. Under a particle-hole
transformation, it is equivalent to the Mott transition of
repulsive Fermi gas in magnetic field (driven by varying
chemical potential). As shown recently by Frahm and
Vekua [32], due to the intrinsic spin-charge coupling, it
is not in the same universality class as the single mode
commensurate-incommensuarate transition.

At finite temperature T , G↑(x, τ) and χ(x, τ) still
factorize due to the decoupling of two normal modes.
After some algebra, we obtain the Fourier component
G0 = G↑(k = kf,↑, ω = 0) (up to a phase factor),

G0 = (2π3αT 2)−1 I1(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2βi

√
ui. (16)

Similarly, χ0 = χ(k = q&, ω = 0) is found to be

χ0 = (2π2αT )−2 I2(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2γi

√
ui. (17)

Here, the dimensionless function I1/2 are defined as

I1(y) =

∫ ∞

−∞
dx

∫ π

0
dt sin t

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−βi ,

I2(y) =

∫ ∞

−∞
dx

∫ π

0
dt

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−γi .

These results will become useful in the RPA calculation
for the quasi-1D systems. Note that the ratio u1/u2 is
not a rapidly changing function of γ. Fig. 1 shows its
value for p = 0.2.

VI. PHASE DIAGRAM OF THE QUASI-1D
SYSTEM AT T = 0.

We now apply the effective theory for single tube to
study the quasi-1D system realized in experiments: a

5

The Luttinger parameters in the g-ology notation, g̃, are
given in terms of {ui, Zij} by Eq. (6.12) to (6.17) in Ref.
38. For example,

vf,↑ + g̃4,↑ − g̃2,↑ = u1(zcc − Zsc)
2 + u2(Zcs − Zss)

2,

vf,↑ + g̃4,↑ + g̃2,↑ =
u1Z2

ss + u2Z2
sc

(ZccZss − ZcsZsc)2
.

The low energy effective theory H ′
TL yields the same fi-

nite size spectrum and correlation functions as the orig-
inal microscopic model H ′

U . It is instructive to compare
this nonperturbative result with that obtained by weak
coupling bosonization, HB in Eq., (7).

(V) Finally we particle-hole transform H ′
TL back to ob-

tain the effective Hamiltonian HTL for HU . In bosonized
form, HTL is obtained from H ′

TL by replacement φ↑ →
−φ↑ and θ↑ → −θ↑. Since HTL is quadratic, we diag-
onalize it by a canonical transformation using matrix Z̄
[31, 32]. The end result is Eq. (8).

V. SINGLE PARTICLE AND PAIR
CORRELATION FUNCTIONS

The bosonized effective Hamiltonian Eq. (8) makes it
straightforward to compute the correlation function of
any operator of the form

O(x) = ei[âTφ̂(x)+b̂Tθ̂(x)]

where â and b̂ are arbitrary two-component vectors, and
φ̂T = (φ↑, φ↓), θ̂T = (θ↑, θ↓). Using the relation Eq. (9),
we find that the correlation function 〈O(x)O†(0)〉 has
the asymptotic behavior of x−2δ at zero temperature as
x → ∞. The scaling dimension of O is given by

δ =
1

4
[âTĝ−1â + b̂Tĝb̂].

The charge matrix is defined by ĝ = Z̄−1Ȳ .
We apply this result to compute the single particle

propagator and the singlet pair susceptibility

Gσ(x, τ) = −〈TτψR,σ(x, τ)ψ†
R,σ(0, 0)〉,

χ(x, τ) = −〈Tτ∆(x, τ)∆†(0, 0)〉. (12)

We shall focus on G↑ for the majority spin (↑), since G↓

only has subdominant power law divergence (its scaling
dimension is larger than that of G↑, i.e., δ↓ > δ↑). For
example, from the bosonized representation of fermion
field operator ψR,σ, Eq. (6), we find a = (−1, 0)T and
b = (1, 0)T for G↑. It follows that for x → ∞ at zero
temperature,

G↑(x) ∼
eikf↑x

x2δ↑
, δ↑ = β1 + β2, (13)

χ(x) ∼
eiq!x

x2δ∆
, δ∆ = γ1 + γ2. (14)

The scaling dimensions of the single particle field oper-
ator ψ↑ and pair operator ∆ are directly related to the
dress charge matrix elements that describe the effect of
spin-charge mixing,

β1 =
1

4
[(Z̄11)

2 + (Ȳ11)
2], β2 =

1

4
[(Z̄21)

2 + (Ȳ21)
2];

γ1 =
1

4
[Z2

cc +
Z2

cs

(det Z̄)2
], γ2 =

1

4
[Z2

cs +
Z2

cc

(det Z̄)2
].

(15)

Here Z̄11 denotes the (1,1) element of the matrix Z̄. We
also define the corresponding anomalous dimensions η↑ =
2 − 2δ↑, and η∆ = 2 − 2δ∆.

Eq. (14) is the hallmark of 1D FFLO phase: the s-wave
pair correlation function oscillates in space at the FFLO
wave vector q& = kf,↑−kf,↓ on top of the algebraic decay.
Although it looks similar to Yang’s conclusion based the
spin-charge separated model HY , the present result fully
takes into account the effect of spin-charge mixing and
remains valid for all values of 0 < p < 1. Our results can
also shed more light on the nature of the magnetic field
driven BCS-FFLO transition in 1D. Under a particle-hole
transformation, it is equivalent to the Mott transition of
repulsive Fermi gas in magnetic field (driven by varying
chemical potential). As shown recently by Frahm and
Vekua [32], due to the intrinsic spin-charge coupling, it
is not in the same universality class as the single mode
commensurate-incommensuarate transition.

At finite temperature T , G↑(x, τ) and χ(x, τ) still
factorize due to the decoupling of two normal modes.
After some algebra, we obtain the Fourier component
G0 = G↑(k = kf,↑, ω = 0) (up to a phase factor),

G0 = (2π3αT 2)−1 I1(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2βi

√
ui. (16)

Similarly, χ0 = χ(k = q&, ω = 0) is found to be

χ0 = (2π2αT )−2 I2(
u1

u2
)

∏

i=1,2

(
πTα

ui
)2γi

√
ui. (17)

Here, the dimensionless function I1/2 are defined as

I1(y) =

∫ ∞

−∞
dx

∫ π

0
dt sin t

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−βi ,

I2(y) =

∫ ∞

−∞
dx

∫ π

0
dt

∏

i

[sinh2(xyi− 3

2 ) + sin2(t)]−γi .

These results will become useful in the RPA calculation
for the quasi-1D systems. Note that the ratio u1/u2 is
not a rapidly changing function of γ. Fig. 1 shows its
value for p = 0.2.

VI. PHASE DIAGRAM OF THE QUASI-1D
SYSTEM AT T = 0.

We now apply the effective theory for single tube to
study the quasi-1D system realized in experiments: a

Signatures of  1D FFLO

Scaling dimension of single particle field operator

Scaling dimension of pair operator

FFLO wave vector
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typically involve highly anisotropicmaterials—made up either ofweakly
coupled two-dimensional (2D)planes or 1Dwires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.
Details of our experimental procedures are given in the Methods

and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formedwith a 2D optical lattice24. The
lattice potential is given byV5V0cos

2(kx)1V0cos
2(ky),with k5 2p/l

and V05 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to bemet for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF5N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
andvz andvH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF. t is equivalent
to specifying that the Fermi surface is 1D, and the condition T. t
makes the inter-tube coupling incoherent.All conditions arewell satisfied
in our experiment: the tube aspect ratio vH/vz5 1,000 is larger than
N1< 120 for the central tube; and t/kB< 17nK is much smaller than
both eF/kB< 1.2mK and T< 175nK.
We tune an external magnetic field to the Bardeen–Cooper–

Schrieffer (BCS) side (890G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(seeMethods).Assuminghydrostatic equilibrium, the 1Dspatial density
profiles n1,2(z) can be expressed in terms of m5m02V(z), and h5h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N5N11N2 and polarization P5 (N12N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z)2n2(z)5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z)5 0, as shown in Fig. 1b.
Figure 2 shows axial density profiles of state j1æ, state j2æ, and their

differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)

1/2az, where N0 is the total number of
particles in the central tube and az5 (B/mvz)

K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasingP (50.055), the phase boundarymoves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and theminority state ( | 2æ) axial density (blue circles) compared with a 175nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes,N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P< 0.136 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P< 0.17.
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typically involve highly anisotropicmaterials—made up either ofweakly
coupled two-dimensional (2D)planes or 1Dwires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.
Details of our experimental procedures are given in the Methods

and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formedwith a 2D optical lattice24. The
lattice potential is given byV5V0cos

2(kx)1V0cos
2(ky),with k5 2p/l

and V05 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to bemet for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF5N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
andvz andvH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF. t is equivalent
to specifying that the Fermi surface is 1D, and the condition T. t
makes the inter-tube coupling incoherent.All conditions arewell satisfied
in our experiment: the tube aspect ratio vH/vz5 1,000 is larger than
N1< 120 for the central tube; and t/kB< 17nK is much smaller than
both eF/kB< 1.2mK and T< 175nK.
We tune an external magnetic field to the Bardeen–Cooper–

Schrieffer (BCS) side (890G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(seeMethods).Assuminghydrostatic equilibrium, the 1Dspatial density
profiles n1,2(z) can be expressed in terms of m5m02V(z), and h5h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N5N11N2 and polarization P5 (N12N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z)2n2(z)5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z)5 0, as shown in Fig. 1b.
Figure 2 shows axial density profiles of state j1æ, state j2æ, and their

differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)

1/2az, where N0 is the total number of
particles in the central tube and az5 (B/mvz)

K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasingP (50.055), the phase boundarymoves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and theminority state ( | 2æ) axial density (blue circles) compared with a 175nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes,N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P< 0.136 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P< 0.17.
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Goal: 

To find a cheap/efficient way 
to compute the finite T 
thermodynamics of GY gas to 
help interpreting the data and 
determine T.

The basic equations for the exact thermodynamics of GY model have been known for quite
some time. See for example, Takahashi (99); Guan et al, PRB 76, 085120 (07).

The so-called thermodynamic Bethe ansatz equations can only be solved numerically.
P. Kakashvili and C. J. Bolech, PRA 79, 041603 (09).

But the procedure is complicated and expensive.

Liao et al, Nature 467, 567 (2010)
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1D FFLO ~ Tightly bound pairs + Leftover (unpaired) fermions.

In such strong coupling limit realized in experiments, it reduces to two 
nearly free (spinless) Fermi gases. (The “residue interaction” vanishes)

!"#$%&'()*$+(,-./)*0$.(1$!$./2/&

1. Density fluctuations of bound pairs — gapless

2. Density fluctuations of unpaired fermions — gapless

3. Spin fluctuations (wrong spins) — cost finite energy, gapped

(broken pairs or flipped spins)

They are suppressed for

!"'##$3/)4%$(5$#6+/&7&/()%8

Excitations in the strong coupling limit

In the strong coupling limit (realized in experiments), simplification occurs:

  The 1D FFLO phase becomes two almost free gases: 

  1) a gas of hard-core “molecules” ! free gas of spinless fermions;
  2) a free gas of leftover fermions.



T � �B , 2h; γ � 1

Thermodynamic Bethe Ansatz simplified

In the experimental regime,                                                     

We find the TBA equations simplify to 4 coupled algebraic equations:

The thermodynamic potential:

partial
pressure

Furthermore, for when T<<h,

2

strength γ = 2/(na1). In the experiments, the gas is usu-
ally dilute and strongly interacting, namely a1 ! 1/n, so
γ " 1. We will focus on this strong coupling limit where
the binding energy εB = !2/(ma2

1) is much larger than
the chemical potentials.

The Gaudin-Yang model is exactly solvable by means
of the Bethe ansatz [12, 13]. Its zero temperature phase
diagram has been worked out theoretically [14, 15, 16].
There are three phases: the fully paired (BCS) phase
which is a quasi-condensate with zero polarization, the
fully polarized (normal) phase with P = 1, and the par-
tially polarized (1D FFLO) phase where 0 < P < 1 and
the pair correlation function oscillates in space [5]. For
given µ, the FFLO phase is separated from the BCS
phase and the normal phase by two quantum critical
points at h = hc1 and hc2, respectively. An effective field
theory of the 1D FFLO phase, recently established by
two of us, shows that it is a novel type of two-component
TLL, each gapless normal mode being a hybridization of
spin and charge [5].

Here, based on the exact Bethe ansatz solution, we
demonstrate that, in the low-energy limit the 1D FFLO
is equivalent to two coupled gases of spinless fermions.
Due to strong attraction, any minority (spin ↓) fermion
would like to pair up with a majority (spin ↑) fermion.
Then, roughly speaking, the FFLO phase can be viewed
as a mixture of tightly bound pairs (labeled by subscript
b) and unpaired leftover fermions (labeled by subscript
u) [14, 15, 16]. By a transmutation in statistics, the
bosonic pair degree of freedom is equivalent to a gas of
spinless fermions, analogous to the well known case of
Tonks-Girardeau gas of hard-core bosons. The two gases
are coupled by residue scattering, so the effective chemi-
cal potential of each gas, µb (µu), depends on the Fermi
pressure of the other gas, pu (pb).

Exact thermodynamics. Our analysis begins with rec-
ognizing the separation of energy scales in the strong
coupling limit. At very low temperatures, T ! µu, µb

(Boltzmann’s constant kB = 1), the thermodynamics of
the 1D FFLO phase is governed by the linearly dispersing
phonon modes, i.e., the long wavelength density fluctua-
tions of the two weakly coupled gases. Using the effective
field theory and the standard conformal mapping [17, 18],
we find the low temperature thermodynamic potential
(per unit length),

GFT (T ) = G0 −
π

6!
(

1

vb
+

1

vu
)T 2 + ... . (2)

The system has two gapless excitations, which are the
long wavelength density fluctuations (phonons) of the
two gases. Their group velocities are the respective
Fermi velocities, vb = (1 − P )[1 + (1 + 3P )/γ]vF /4 and
vu = P [1 + 4(1 − P )/γ]vF , with vF = !nπ/m [16]. At
higher temperatures, T ∼ µb or µu, the particle and hole
excitations are no longer restricted near the Fermi sur-
face. Their dispersion undergoes a crossover from rela-

tivistic (linear in k) to non-relativistic (k2). In particular,
this happens in the vicinity of quantum critical points,
where either µb or µu becomes vanishingly small. The
conformal invariance is now violated due to the lack of
Lorentz invariance. Consequently, Eq. (2) becomes inad-
equate. Nevertheless, we shall show that the system is
still equivalent to two weakly coupled gases despite the
lack of conformal invariance.

At even higher temperature, T ∼ εB, there is enough
thermal energy to break pairs. Similarly, for T ∼ 2h, a
leftover fermion can flip its spin to be anti-parallel to the
external field h due to thermal excitation. However, in
this paper, we focus on the physically interesting regime
of low temperatures and strong coupling,

T ! εB, 2h and γ " 1 . (3)

Our key observation is that the TBA equations can be
greatly simplified in the regime (3) due to the suppres-
sion of spin fluctuations. Mathematically, the infinite
set of integral equations for spin rapidities is analytically
tractable for strong attraction and high magnetic field.
Their overall effect can be absorbed into a renormaliza-
tion of µu, which becomes exponentially small at low T
so the feedback effect to the spin rapidity solution can
be safely neglected. This leads to our central result—
computing the thermodynamics at finite temperatures
only requires solving the coupled algebraic equations:

µb = µ +
εB

2
−

a1

4
pb − a1pu, (4)

µu = µ + T ln(2 cosh
h

T
) − a1pb −

a1

4
pusech2 h

T
, (5)

pb = −

√

m

π!2
T 3/2Li 3

2

(−e2µb/T ), (6)

pu = −

√

m

2π!2
T 3/2Li 3

2

(−eµu/T ). (7)

Here, Lis(x) is the standard polylogarithm function as a
result of the Fermi-Dirac integral. As we shall focus on
the regime (3), we can further neglect the exponentially
small contributions from the spin fluctuation. Hence,
Eq. (5) is replaced by

µu = µ + h − a1pb. (8)

The thermodynamic potential (per unit length) G is
then given by G = −p = −(pb + pu), where p is the
pressure. From G , it is straightforward to find the den-
sity n = −∂G /∂µ, the magnetization M = −∂G /∂h,
the entropy s = −∂G /∂T , and the compressibility κ =
∂n/∂µ. For these purposes, it is convenient to first
take the corresponding derivative of Eqs. (4)–(7), use
∂Lis(−ex)/∂x = Lis−1(−ex), and then solve the re-
sulting linear equations. For example, defining α =
−(mT/4π!2)1/2Li1/2(−e2µb/T ), β = −(mT/2π!2)1/2

Li1/2(−eµu/T ) and c = 1 + a1α − 4a2
1αβ, we have

n = (4α + β − 7a1αβ)/c, M = β(1 − 3a1α)/c. (9)

6Li gas described by Li3/2(x)



How good is the simplified TBA

Full TBA

Energy unit !B/2, 
length unit a1D

Simplified TBA

Simplified TBA

Fi
el

d 
  t

he
or

y

entropy

pressure
TBA agrees with 
field theory when

3

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1T

p(T)

s(T)

sFT µ=-0.95, h=1.1

T*
0

c1 hc2
BCS

TLL TLLb 2

T

T *

QCQC

hFFLO Normal

TLLu

h

FIG. 1: (Color online) Left panel: Comparison of the tem-
perature dependence of the pressure p obtained by numeri-
cally solving the full TBA equations (circles) and simplified
Eqs. (4)–(7) (solid line). The entropy s(T ) (green dashed
line) is linear in T at low temperatures, agreeing well with
sF T (blue dotted line) as predicted by the low energy effec-
tive field theory. µ = −0.95 and h = 1.1. The energy and
length units are εB/2 and a1, respectively. Right panel: The
schematic finite-temperature “phase diagram” in the regime
Eq. (3).

A detailed analysis of the TBA equations together with
the derivation of Eqs. (4)–(8) will be presented elsewhere.

For given (µ, h, T ), equations (4)-(8) can be solved by
simple iteration by treating a1pb as being small compared
to µb and similarly a1pu as to µu. These equations free us
from the requirement of solving the full TBA equations,
which is a much harder task [10]. To test the accuracy
of our new approach, we examined the pressure p = −G .
In Fig. 1, we compare results from Eqs. (4)–(8) (solid
lines) and that obtained by numerically solving the full
TBA equations (circles). We observe that indeed only
at high temperature, T ∼ εB/2, the deviation from the
exact result becomes significant. Thus the validity of our
new formulation is established.

In the low temperature limit T # µb, µu we calculate
the free energy using a Sommerfeld expansion based on
Eqs. (4)–(5). Indeed, we find the thermodynamic poten-
tial reproduces the field theory result [Eq. (2)] and the
corresponding entropy (per unit length)

sFT =
π
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The entropy s(T ) obtained from Eqs. (4)–(7) is shown
in Fig. 1 together with the low energy effective field
theory result sFT . s(T ) is clearly linear in T at low
temperatures and agrees well with sFT . The deviation
from the linear T dependence marks a universal crossover
around T ∗ from relativistic to non-relativistic dispersion
for particle- and hole-like excitations. This leads to a
minima in the magnetization as well as in the densities
(not shown in Fig. 1) at roughly the same temperature
scale T ∗. Analogous crossover phenomena were discussed
in the magnetization curve for gapped spin-1 Heisenberg
chains [19] and experimentally observed in two-leg spin
ladders [20].

The gross features of our findings are summarized in

the schematic “phase diagram” in Fig. 1. There is no
phase transition at finite temperature but only crossovers
between different regimes. At low temperatures, the
BCS, normal, and FFLO phase become the relativistic
TLL of bound pairs (TLLb), unpaired fermions (TLLu),
and two-component TLL (TLL2) respectively. The TLL
description of the FFLO phase breaks down at crossover
temperature T ∗ where the dispersion of either bound
pairs or leftover fermions becomes non-relativistic. In
particular, in the vicinity of the quantum critical points
(hc1 and hc2), the system crosses over to the “quantum
critical (QC) regime”. The other crossover (dash-dot)
lines roughly correspond to the excitation gap for un-
paired fermions or bound pairs.

Application: two-stage thermometry. Now we use these
formulas to study the strongly interacting imbalanced
Fermi gas inside a 1D harmonic trap of frequency ω. Ac-
cording to the local density approximation, the chemical
potential varies in space as µ(x) = µ0 − 1

2
mω2x2, with

x = 0 corresponding to the center of the trap, while
the magnetic field h stays constant. Thus, distinct zero
temperature phases are realized at different locations in
the trap, giving rise to particular spatial structures in
the in-situ density images. A central challenge in inter-
preting the density distribution data from experiments is
how to determine (T, µ0, h), none of which seems to be
accurately measurable so far.

We use our results to propose a two-stage scheme to
accurately determine the parameters T , µ0, and h from
the density profiles. Stage 1: estimate the values of these
parameters using the density profiles at the phase bound-
ary and at the edge of the gas cloud. Stage 2: using the
estimations as guess inputs, obtain (T, µ0, h) to high ac-
curacy by a direct three-parameter fit of the whole den-
sity profile using Eq. (9). Previously, thermal tails at the
outer wing of the density cloud have been used to extract
the temperature of atomic gases in 3D traps based on
the observation that the gas is essentially non-interacting
there [21, 22]. Here, by contrast, the outer wing may still
interact strongly (e.g., it might be a Tonks-Girardeau
gas). Moreover, our method utilizes densities not only at
the edge of the cloud, but also at the interface. We now
illustrate how to accomplish the goals of Stage 1 for the
cases of low and high total polarization.

For low polarization, the trap consists of a partially
polarized (FFLO) core and a fully paired (BCS) wing,
which at strong coupling is a Tonks-Girardeau gas. Rep-
resentative finite T density distributions are shown in
the left panel of Fig. 2. At T = 0, the magnetiza-
tion M drops to zero at the FFLO-BCS phase bound-
ary µ = −h + n3π2a1/24 [16], while n↑ and n↓ vanish
at µ = −εB/2. Finite temperature leads to thermal
tails for all three. The compressibility κ is also shown
in Fig. 2, which develops a peak near the edge of the
cloud. At T = 0, κ diverges as ∼ 1/

√

µ + εB/2 as µ ap-
proaches −εB/2. At finite temperature, this divergence
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FIG. 1: (Color online) Left panel: Comparison of the tem-
perature dependence of the pressure p obtained by numeri-
cally solving the full TBA equations (circles) and simplified
Eqs. (4)–(7) (solid line). The entropy s(T ) (green dashed
line) is linear in T at low temperatures, agreeing well with
sF T (blue dotted line) as predicted by the low energy effec-
tive field theory. µ = −0.95 and h = 1.1. The energy and
length units are εB/2 and a1, respectively. Right panel: The
schematic finite-temperature “phase diagram” in the regime
Eq. (3).

A detailed analysis of the TBA equations together with
the derivation of Eqs. (4)–(8) will be presented elsewhere.

For given (µ, h, T ), equations (4)-(8) can be solved by
simple iteration by treating a1pb as being small compared
to µb and similarly a1pu as to µu. These equations free us
from the requirement of solving the full TBA equations,
which is a much harder task [10]. To test the accuracy
of our new approach, we examined the pressure p = −G .
In Fig. 1, we compare results from Eqs. (4)–(8) (solid
lines) and that obtained by numerically solving the full
TBA equations (circles). We observe that indeed only
at high temperature, T ∼ εB/2, the deviation from the
exact result becomes significant. Thus the validity of our
new formulation is established.

In the low temperature limit T # µb, µu we calculate
the free energy using a Sommerfeld expansion based on
Eqs. (4)–(5). Indeed, we find the thermodynamic poten-
tial reproduces the field theory result [Eq. (2)] and the
corresponding entropy (per unit length)

sFT =
π
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The entropy s(T ) obtained from Eqs. (4)–(7) is shown
in Fig. 1 together with the low energy effective field
theory result sFT . s(T ) is clearly linear in T at low
temperatures and agrees well with sFT . The deviation
from the linear T dependence marks a universal crossover
around T ∗ from relativistic to non-relativistic dispersion
for particle- and hole-like excitations. This leads to a
minima in the magnetization as well as in the densities
(not shown in Fig. 1) at roughly the same temperature
scale T ∗. Analogous crossover phenomena were discussed
in the magnetization curve for gapped spin-1 Heisenberg
chains [19] and experimentally observed in two-leg spin
ladders [20].

The gross features of our findings are summarized in

the schematic “phase diagram” in Fig. 1. There is no
phase transition at finite temperature but only crossovers
between different regimes. At low temperatures, the
BCS, normal, and FFLO phase become the relativistic
TLL of bound pairs (TLLb), unpaired fermions (TLLu),
and two-component TLL (TLL2) respectively. The TLL
description of the FFLO phase breaks down at crossover
temperature T ∗ where the dispersion of either bound
pairs or leftover fermions becomes non-relativistic. In
particular, in the vicinity of the quantum critical points
(hc1 and hc2), the system crosses over to the “quantum
critical (QC) regime”. The other crossover (dash-dot)
lines roughly correspond to the excitation gap for un-
paired fermions or bound pairs.

Application: two-stage thermometry. Now we use these
formulas to study the strongly interacting imbalanced
Fermi gas inside a 1D harmonic trap of frequency ω. Ac-
cording to the local density approximation, the chemical
potential varies in space as µ(x) = µ0 − 1

2
mω2x2, with

x = 0 corresponding to the center of the trap, while
the magnetic field h stays constant. Thus, distinct zero
temperature phases are realized at different locations in
the trap, giving rise to particular spatial structures in
the in-situ density images. A central challenge in inter-
preting the density distribution data from experiments is
how to determine (T, µ0, h), none of which seems to be
accurately measurable so far.

We use our results to propose a two-stage scheme to
accurately determine the parameters T , µ0, and h from
the density profiles. Stage 1: estimate the values of these
parameters using the density profiles at the phase bound-
ary and at the edge of the gas cloud. Stage 2: using the
estimations as guess inputs, obtain (T, µ0, h) to high ac-
curacy by a direct three-parameter fit of the whole den-
sity profile using Eq. (9). Previously, thermal tails at the
outer wing of the density cloud have been used to extract
the temperature of atomic gases in 3D traps based on
the observation that the gas is essentially non-interacting
there [21, 22]. Here, by contrast, the outer wing may still
interact strongly (e.g., it might be a Tonks-Girardeau
gas). Moreover, our method utilizes densities not only at
the edge of the cloud, but also at the interface. We now
illustrate how to accomplish the goals of Stage 1 for the
cases of low and high total polarization.

For low polarization, the trap consists of a partially
polarized (FFLO) core and a fully paired (BCS) wing,
which at strong coupling is a Tonks-Girardeau gas. Rep-
resentative finite T density distributions are shown in
the left panel of Fig. 2. At T = 0, the magnetiza-
tion M drops to zero at the FFLO-BCS phase bound-
ary µ = −h + n3π2a1/24 [16], while n↑ and n↓ vanish
at µ = −εB/2. Finite temperature leads to thermal
tails for all three. The compressibility κ is also shown
in Fig. 2, which develops a peak near the edge of the
cloud. At T = 0, κ diverges as ∼ 1/

√

µ + εB/2 as µ ap-
proaches −εB/2. At finite temperature, this divergence

Similar truncation approximation was employed 
by Bauer and Mueller et al to fit the data of Rice 
experiment. Liao et al, Nature 467, 567 (2010)
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FIG. 1: (Color online) Left panel: Comparison of the tem-
perature dependence of the pressure p obtained by numeri-
cally solving the full TBA equations (circles) and simplified
Eqs. (4)–(7) (solid line). The entropy s(T ) (green dashed
line) is linear in T at low temperatures, agreeing well with
sF T (blue dotted line) as predicted by the low energy effec-
tive field theory. µ = −0.95 and h = 1.1. The energy and
length units are εB/2 and a1, respectively. Right panel: The
schematic finite-temperature “phase diagram” in the regime
Eq. (3).

A detailed analysis of the TBA equations together with
the derivation of Eqs. (4)–(8) will be presented elsewhere.

For given (µ, h, T ), equations (4)-(8) can be solved by
simple iteration by treating a1pb as being small compared
to µb and similarly a1pu as to µu. These equations free us
from the requirement of solving the full TBA equations,
which is a much harder task [10]. To test the accuracy
of our new approach, we examined the pressure p = −G .
In Fig. 1, we compare results from Eqs. (4)–(8) (solid
lines) and that obtained by numerically solving the full
TBA equations (circles). We observe that indeed only
at high temperature, T ∼ εB/2, the deviation from the
exact result becomes significant. Thus the validity of our
new formulation is established.

In the low temperature limit T # µb, µu we calculate
the free energy using a Sommerfeld expansion based on
Eqs. (4)–(5). Indeed, we find the thermodynamic poten-
tial reproduces the field theory result [Eq. (2)] and the
corresponding entropy (per unit length)

sFT =
π
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The entropy s(T ) obtained from Eqs. (4)–(7) is shown
in Fig. 1 together with the low energy effective field
theory result sFT . s(T ) is clearly linear in T at low
temperatures and agrees well with sFT . The deviation
from the linear T dependence marks a universal crossover
around T ∗ from relativistic to non-relativistic dispersion
for particle- and hole-like excitations. This leads to a
minima in the magnetization as well as in the densities
(not shown in Fig. 1) at roughly the same temperature
scale T ∗. Analogous crossover phenomena were discussed
in the magnetization curve for gapped spin-1 Heisenberg
chains [19] and experimentally observed in two-leg spin
ladders [20].

The gross features of our findings are summarized in

the schematic “phase diagram” in Fig. 1. There is no
phase transition at finite temperature but only crossovers
between different regimes. At low temperatures, the
BCS, normal, and FFLO phase become the relativistic
TLL of bound pairs (TLLb), unpaired fermions (TLLu),
and two-component TLL (TLL2) respectively. The TLL
description of the FFLO phase breaks down at crossover
temperature T ∗ where the dispersion of either bound
pairs or leftover fermions becomes non-relativistic. In
particular, in the vicinity of the quantum critical points
(hc1 and hc2), the system crosses over to the “quantum
critical (QC) regime”. The other crossover (dash-dot)
lines roughly correspond to the excitation gap for un-
paired fermions or bound pairs.

Application: two-stage thermometry. Now we use these
formulas to study the strongly interacting imbalanced
Fermi gas inside a 1D harmonic trap of frequency ω. Ac-
cording to the local density approximation, the chemical
potential varies in space as µ(x) = µ0 − 1

2
mω2x2, with

x = 0 corresponding to the center of the trap, while
the magnetic field h stays constant. Thus, distinct zero
temperature phases are realized at different locations in
the trap, giving rise to particular spatial structures in
the in-situ density images. A central challenge in inter-
preting the density distribution data from experiments is
how to determine (T, µ0, h), none of which seems to be
accurately measurable so far.

We use our results to propose a two-stage scheme to
accurately determine the parameters T , µ0, and h from
the density profiles. Stage 1: estimate the values of these
parameters using the density profiles at the phase bound-
ary and at the edge of the gas cloud. Stage 2: using the
estimations as guess inputs, obtain (T, µ0, h) to high ac-
curacy by a direct three-parameter fit of the whole den-
sity profile using Eq. (9). Previously, thermal tails at the
outer wing of the density cloud have been used to extract
the temperature of atomic gases in 3D traps based on
the observation that the gas is essentially non-interacting
there [21, 22]. Here, by contrast, the outer wing may still
interact strongly (e.g., it might be a Tonks-Girardeau
gas). Moreover, our method utilizes densities not only at
the edge of the cloud, but also at the interface. We now
illustrate how to accomplish the goals of Stage 1 for the
cases of low and high total polarization.

For low polarization, the trap consists of a partially
polarized (FFLO) core and a fully paired (BCS) wing,
which at strong coupling is a Tonks-Girardeau gas. Rep-
resentative finite T density distributions are shown in
the left panel of Fig. 2. At T = 0, the magnetiza-
tion M drops to zero at the FFLO-BCS phase bound-
ary µ = −h + n3π2a1/24 [16], while n↑ and n↓ vanish
at µ = −εB/2. Finite temperature leads to thermal
tails for all three. The compressibility κ is also shown
in Fig. 2, which develops a peak near the edge of the
cloud. At T = 0, κ diverges as ∼ 1/

√

µ + εB/2 as µ ap-
proaches −εB/2. At finite temperature, this divergence

3 phases, 2 quantum critical points at T=0

TLL description valid for T<T*, away 
from the quantum critical points.

EZ et al, PRL 103, 140404 (2009)

(schematic)

Very recent work includes higher order corrections to simplified TBA
to discuss the equation of state and quantum criticality of the same model.

Xiwen Guan and Tin-Lun Ho, arXiv:1010.1301 (2010).



Beyond 1D: inter-tube coupling
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excitations in 1D to give birth to well defined quasiparticles. 

Pair tunneling (Josephson coupling) tends to lock the phases of 
individual tubes to produce a genuine superfluid state with long range order.

t

J

What does the 1D FFLO turn into in the presence of these perturbations?

Answer this question by a renormalization group analysis of our effective theory.
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RG phase diagram of weakly coupled tubes
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Figure 2: The RG phase diagram in the limit of t⊥ → 0 for weakly coupled Gaudin-Yang gas (a)

and 1D Hubbard chain (b) [84]. c) Sketch of Tc(t⊥) in the dimensional crossover guided by RPA.

[84]. The main conclusion is that in the presence of the interchain hopping, the 1D algebraic
FFLO state evolves into either an FFLO phase with true long range order or a normal Fermi
liquid. We further determined how the superfluid transition temperature (Tc) scales with t⊥
using random phase approximation (RPA) [79, 9]. However, only the functional form of Tc

was determined. Numerical estimation of Tc was impossible since the underlying effective
field theory involves ultraviolet cut-off and is only valid at low energies.

The opposite, anisotropic 3D limit of the dimensional crossover was studied by Parish
et al for cubic lattice with t⊥ < t� using BdG mean field theory [62]. They confirmed the
existence of FFLO phase (in our context, FFLO actually refers to the LO phase throughout)
and argued that the optimal place to search for FFLO state is in quasi-one dimension, where
the transverse coherence is strong enough to establish the superfluid long range order but the
fermion dynamics is still dominantly one-dimensional. In the isotropic 3D limit (t⊥ = t�),
there exist a large body of theoretical works on continuum as well as lattice attractive Fermi
gases with population imbalance as reviewed in Ref. [29, 72]. For continuum gases, mean
field theories predict a tiny sliver of FFLO phase in the phase diagram [72]. A series of
recent experiments done at MIT [73, 71, 86, 87] and Rice [65, 64] on imbalanced Fermi
gases indeed found no evidence of FFLO phase in 3D traps. Instead, phase separation was
observed, where a fully paired BCS region lies at the center of the trap surrounded by a
fully polarized normal wing, in agreement with theory. Interestingly, BdG theory predicts
that FFLO phase develops a larger region of stability in the isotropic cubic lattice than
in continuum gases [49]. The enhancement is a lattice effect and is intimately related to
the van Hove singularity in the density of states. Putting all these known results together,
we observe a gap in our knowledge in the quasi-1D region. On one hand, strong intra-tube
quantum fluctuation renders BdG mean field theory inaccurate in this region (it overestimate
the pair correlation). On the other hand, RG analysis loses its predicting power as soon as
T⊥ becomes finite.
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Perturbation theory in quasi-1D
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 0

 0.2

 0.4

 0.6

 0.8

 1

 3  4  5  6  7  8

p

γ

Fermi Liquid

FFLO

10

t

!"

#$%&'()"

Tca) b) c)

FL

7

6

5

4

1

0.25

0.5

U/t=2

3

FFLO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

p

n

RPA

Figure 2: The RG phase diagram in the limit of t⊥ → 0 for weakly coupled Gaudin-Yang gas (a)

and 1D Hubbard chain (b) [84]. c) Sketch of Tc(t⊥) in the dimensional crossover guided by RPA.

[84]. The main conclusion is that in the presence of the interchain hopping, the 1D algebraic
FFLO state evolves into either an FFLO phase with true long range order or a normal Fermi
liquid. We further determined how the superfluid transition temperature (Tc) scales with t⊥
using random phase approximation (RPA) [79, 9]. However, only the functional form of Tc

was determined. Numerical estimation of Tc was impossible since the underlying effective
field theory involves ultraviolet cut-off and is only valid at low energies.

The opposite, anisotropic 3D limit of the dimensional crossover was studied by Parish
et al for cubic lattice with t⊥ < t� using BdG mean field theory [62]. They confirmed the
existence of FFLO phase (in our context, FFLO actually refers to the LO phase throughout)
and argued that the optimal place to search for FFLO state is in quasi-one dimension, where
the transverse coherence is strong enough to establish the superfluid long range order but the
fermion dynamics is still dominantly one-dimensional. In the isotropic 3D limit (t⊥ = t�),
there exist a large body of theoretical works on continuum as well as lattice attractive Fermi
gases with population imbalance as reviewed in Ref. [29, 72]. For continuum gases, mean
field theories predict a tiny sliver of FFLO phase in the phase diagram [72]. A series of
recent experiments done at MIT [73, 71, 86, 87] and Rice [65, 64] on imbalanced Fermi
gases indeed found no evidence of FFLO phase in 3D traps. Instead, phase separation was
observed, where a fully paired BCS region lies at the center of the trap surrounded by a
fully polarized normal wing, in agreement with theory. Interestingly, BdG theory predicts
that FFLO phase develops a larger region of stability in the isotropic cubic lattice than
in continuum gases [49]. The enhancement is a lattice effect and is intimately related to
the van Hove singularity in the density of states. Putting all these known results together,
we observe a gap in our knowledge in the quasi-1D region. On one hand, strong intra-tube
quantum fluctuation renders BdG mean field theory inaccurate in this region (it overestimate
the pair correlation). On the other hand, RG analysis loses its predicting power as soon as
T⊥ becomes finite.
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The 3D pair susceptibility is related to the exact 1D susceptibility by
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FIG. 3: (Color online) Zero temperature phase diagram of
the quasi-1D attractive Hubbard model, HU + H⊥ + HJ , in
the limit of small t⊥. p is the population imbalance. Each
line for fixed density n (top panel) or interaction strength U/t
(bottom panel) is the phase boundary separating the FFLO
and Fermi liquid (FL) phase (indicated by arrows). Inset:
phase diagram of the 1D attractive Hubbard model (single
tube).

a small but finite t⊥, going beyond the perturbative RG
analysis in the previous section. RPA has been success-
fully applied to study coupled Luttinger liquids (p = 0)
[41]. Here we generalize it to the case of p > 0 with
spin-charge mixing. Within RPA, the 3D single particle
propagator

G
−1
↑ (k, k⊥ = 0, ωn) = G−1

↑ (k, ωn) − z⊥t⊥, (19)

and the 3D pair susceptibility

X
−1(q!, k⊥ = 0, ω = 0) = χ−1

0 − z⊥J, (20)

where k⊥ is the transverse momentum and z⊥ = 4 is the
transverse coordination number of every single atomic
gas tube in a square lattice array. The 1D propagator
G↓ and susceptibility χ0 have been computed in Section
V and are given by Eq. (16) and (17), respectively.
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FIG. 4: RPA predictions for the t⊥ dependence of the single
particle crossover (Luttinger liquid to Fermi liquid) temper-

ature, TFL ∼ t
1/η↑

⊥
, and the FFLO transition temperature,

Tc ∼ t2/η∆

⊥
, as functions of γ for p = 0.2.

RPA predicts two temperature scales that character-
ize the 1D-to-3D crossover as the temperature is lowered.
G↑(kf↑, 0, ωn=1) starts to develop a pole at the single par-
ticle crossover temperature TFL. From Eq. (19), we find

TFL ∼ W

[

t⊥z⊥
W

I1(
u1

u2
)

]1/η↑
∏

i

(

ui

v̄f

)(1/2−2βi)/η↑

.

(21)
Similarly, the divergence of the 3D pair susceptibility
X (q!, 0, 0) defines the two particle crossover tempera-
ture Tc,

Tc ∼ W

[

Jz⊥
v̄f

I2(
u1

u2
)

]1/η∆
∏

i

(

ui

v̄f

)(1/2−2γi)/η∆

. (22)

Here the ultraviolet cutoff W = v̄f/α is roughly the band
width (or Fermi energy). Above max(TFL, Tc), ther-
mal fluctuation destroys coherence between the tubes,
the system behaves as uncoupled two-component Lut-
tinger liquids with fractional excitations, each described
by HFFLO. As the temperature is lowered, if TFL > Tc,
these fractional excitations first confine into sharply de-
fined quasiparticles at temperature scale TFL, and the
system crosses over to a partially polarized Fermi liquid
(the Fermi liquid may develop other instabilities at lower
temperature depending on the details of the residue inter-
actions between the quasiparticles). On the other hand,
if Tc > TFL, the system first undergoes a phase transition
into an FFLO phase with long range order. In this case,
Tc can be identified as the superfluid transition temper-
ature. In the limit of vanishing p, the transition into the
FFLO superfluid can be viewed as the condensation of
soliton liquid into crystal, i.e. static domain walls [17].

Whether the single or two particle crossover occurs first
depends on the interaction strength. At low densities,
we find from Eq. (21) and (22) that TFL > Tc at small
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Figure 2: The RG phase diagram in the limit of t⊥ → 0 for weakly coupled Gaudin-Yang gas (a)

and 1D Hubbard chain (b) [84]. c) Sketch of Tc(t⊥) in the dimensional crossover guided by RPA.

[84]. The main conclusion is that in the presence of the interchain hopping, the 1D algebraic
FFLO state evolves into either an FFLO phase with true long range order or a normal Fermi
liquid. We further determined how the superfluid transition temperature (Tc) scales with t⊥
using random phase approximation (RPA) [79, 9]. However, only the functional form of Tc

was determined. Numerical estimation of Tc was impossible since the underlying effective
field theory involves ultraviolet cut-off and is only valid at low energies.

The opposite, anisotropic 3D limit of the dimensional crossover was studied by Parish
et al for cubic lattice with t⊥ < t� using BdG mean field theory [62]. They confirmed the
existence of FFLO phase (in our context, FFLO actually refers to the LO phase throughout)
and argued that the optimal place to search for FFLO state is in quasi-one dimension, where
the transverse coherence is strong enough to establish the superfluid long range order but the
fermion dynamics is still dominantly one-dimensional. In the isotropic 3D limit (t⊥ = t�),
there exist a large body of theoretical works on continuum as well as lattice attractive Fermi
gases with population imbalance as reviewed in Ref. [29, 72]. For continuum gases, mean
field theories predict a tiny sliver of FFLO phase in the phase diagram [72]. A series of
recent experiments done at MIT [73, 71, 86, 87] and Rice [65, 64] on imbalanced Fermi
gases indeed found no evidence of FFLO phase in 3D traps. Instead, phase separation was
observed, where a fully paired BCS region lies at the center of the trap surrounded by a
fully polarized normal wing, in agreement with theory. Interestingly, BdG theory predicts
that FFLO phase develops a larger region of stability in the isotropic cubic lattice than
in continuum gases [49]. The enhancement is a lattice effect and is intimately related to
the van Hove singularity in the density of states. Putting all these known results together,
we observe a gap in our knowledge in the quasi-1D region. On one hand, strong intra-tube
quantum fluctuation renders BdG mean field theory inaccurate in this region (it overestimate
the pair correlation). On the other hand, RG analysis loses its predicting power as soon as
T⊥ becomes finite.
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Qualitative picture of the 1D-to-3D dimensional crossover:
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γ (weak interaction) while Tc > TFL for large γ (strong
interaction). Thus, the schematic plot of TFL and Tc as
functions of γ looks similar to Fig. 1 of Ref. [41] for
coupled Luttinger liquids. At some critical value of γ,
TFL and Tc are comparable to each other. This marks the
phase boundary between the Fermi liquid and the FFLO
phase. All these results are in qualitative agreement with
those obtained in the previous section from RG analysis.

Eq. (22) shows that Tc scales with J as a power law,
with the exponent given by the inverse of anomalous di-
mension η∆,

Tc ∝ J1/η∆ .

The exponents η−1
∆ and η−1

↑ are plotted in Fig. 4 for p =
0.2. We observe that at weak interaction TFL ∝ t⊥, while
at strong interaction Tc ∝ J ∝ t2⊥. The growth of Tc with

inter-tube coupling will eventually stop when t⊥ becomes
so large that it can no longer be treated as a perturbation.
Then the system becomes more 3D-like, and Tc starts to
drop as t⊥ is further increased [14]. Our results support
the argument of Ref. [14] that the optimal value of Tc is
realized for small but finite t⊥.
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1. 1D FFLO as a special (spin-charge mixed) quantum liquid 
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Theory

Stability region of FFLO in quasi-1D.

Mean field BdG analysis of anisotropic lattice systems:
Parish et al, PRL 99, 250403 (2007) and lot of others.

typically involve highly anisotropicmaterials—made up either ofweakly
coupled two-dimensional (2D)planes or 1Dwires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.
Details of our experimental procedures are given in the Methods

and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formedwith a 2D optical lattice24. The
lattice potential is given byV5V0cos

2(kx)1V0cos
2(ky),with k5 2p/l

and V05 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to bemet for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF5N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
andvz andvH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF. t is equivalent
to specifying that the Fermi surface is 1D, and the condition T. t
makes the inter-tube coupling incoherent.All conditions arewell satisfied
in our experiment: the tube aspect ratio vH/vz5 1,000 is larger than
N1< 120 for the central tube; and t/kB< 17nK is much smaller than
both eF/kB< 1.2mK and T< 175nK.
We tune an external magnetic field to the Bardeen–Cooper–

Schrieffer (BCS) side (890G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(seeMethods).Assuminghydrostatic equilibrium, the 1Dspatial density
profiles n1,2(z) can be expressed in terms of m5m02V(z), and h5h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N5N11N2 and polarization P5 (N12N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z)2n2(z)5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z)5 0, as shown in Fig. 1b.
Figure 2 shows axial density profiles of state j1æ, state j2æ, and their

differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)

1/2az, where N0 is the total number of
particles in the central tube and az5 (B/mvz)

K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasingP (50.055), the phase boundarymoves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and theminority state ( | 2æ) axial density (blue circles) compared with a 175nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes,N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P< 0.136 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P< 0.17.
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