Announced Title:

Cold Atoms and Molecules:
 Optical Lattices
 \rightarrow Self-assembled Lattices

Guido Pupillo (Innsbruck)
Friday Morning Session

- Polar Molecules \& "Rydberg dressed" atoms
- dipolar quantum gases in 2D \& "shaped" interaction potentials

Crystals

Supersolid Droplets

Open Many Body Quantum Systems: Atoms in Optical Lattices

Peter Zoller

UNIVERSITY OF INNSBRUCK

IQOQI
AUSTRIAN ACADEMY OF SCIENCES

Innsbruck:
A. Daley
S. Diehl
A. Micheli
M. Müller (PhD)
A. Kantian (PhD \rightarrow Geneva)
I. Lesanovsky (\rightarrow Nottingham)
B. Kraus
collaborations:
H.P. Büchler (Stuttgart)

NAMEQUAM

Outline

- Open System Dynamics \rightarrow Desired Many Body State
- d-wave pairing by dissipation
- Rydberg Quantum Simulator for Open System Dynamics
- Example: Kitaev toric code \& stabilizer pumping
- [an ion trap experiment: "single plaquette"]
- Decoherence / heating: spontaneous emission in opt. lattices

Single Site Imaging (\& Addressing)

- Addressable lattices

- Imaging Hubbard models: Harvard, Munich, Chicago, Penn State, ...

Site-resolved imaging of single atoms on a 640-nm-period optical lattice, loaded with a high density BEC

[^0]
Preparing "interesting" (pure) many body states ... \& AMO

- condensed matter physics

$$
\rho \sim e^{-H / k_{B} T} \xrightarrow{T \rightarrow 0}\left|E_{g}\right\rangle\left\langle E_{g}\right|
$$

cooling to ground state strongly correlated states equilibrium cond mat

- cold atoms in optical lattices

quantum simulation
engineering Hamiltonians
- trapped ions

general purpose quantum computing

Preparing "interesting" (pure) many body states ... \& AMO

- condensed matter physics

$$
\rho \sim e^{-H / k_{B} T} \xrightarrow{T \rightarrow 0}\left|E_{g}\right\rangle\left\langle E_{g}\right|
$$

cooling to ground state strongly correlated states equilibrium cond mat

- cold atoms in optical lattices

quantum simulation
engineering Hamiltonians

addressable optical lattices

Here ...

- open quantum system
- quantum operations

$$
\rho \rightarrow \mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

entanglement with environment
decoherence :

- open quantum system
- quantum operations

$$
\rho \rightarrow \mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

$$
!?
$$

$$
=|\psi\rangle\langle\psi|
$$

Q.: prepare given pure many body state by open system dynamics?

- open quantum system
- quantum operations

$$
\rho \rightarrow \mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

$$
\begin{aligned}
& !? \\
& =|\psi\rangle\langle\psi|
\end{aligned}
$$

- quantum optical systems as driven open quantum systems

^-system: EIT, STIRAP, ..., VSCPT

$$
\rho(t) \xrightarrow{t \rightarrow \infty}|D\rangle\langle D|
$$

steady state as pure "dark state" here: ... on a single particle level

- open quantum system

- quantum operations

$$
\rho \rightarrow \mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

!?

$$
=|\psi\rangle\langle\psi|
$$

- quantum optical systems as driven open quantum systems

$$
\begin{array}{rcc}
\rho(t) \xrightarrow{t \rightarrow \infty} & \rho_{\text {ss }} & \text { mixed state } \\
& \stackrel{!?}{=} & |D\rangle\langle D| \\
\text { steady state } & & \text { ("dare state state") }
\end{array}
$$

Q.: prepare given pure many body state by open system dynamics?
Q.: engineer quantum reservoirs \& couplings in many body system?

> quasi-local Lindblad operators

- master equation

$$
\frac{d \rho}{d t}=-i[H, \rho]+\mathcal{L} \rho
$$

- Engineering $\{H, \mathcal{L}\}$ so that a given $|D\rangle$ is a dark state:
constructing "parent
Liouvillians"
(i) $\forall \alpha \quad c_{\alpha}|D\rangle=0$
(ii) $H|D\rangle=E|D\rangle$

$$
\rho(t) \xrightarrow{t \rightarrow \infty}|D\rangle\langle D|
$$

B. Kraus et al., PRA 2008
Q.: Identifying and engineering Lindblad operators, new physics ...?

- Example 1: d-wave pairing by dissipation
S. Diehl, W. Yi, A. J. Daley, PZ, PRL 2010 (in print)

Motivation: Repulsive 2D fermionic Hubbard model

Hubbard Hamiltonian

$$
H=-t \sum_{i, j, \sigma}\left(c_{i \sigma}^{+} c_{j \sigma}+c_{j \sigma}^{+} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

> doped resonant valence bond (RVB) state (?)
half-filling (parent compounds): superposition of singlet coverings

mean field description: Gutzwiller projected BCS-state with dwave Cooper pairs
here: pairing due to interactions. Can we induce pairing by coupling to an environment? Can we "cool" to paired states?

hole-doping:
hole pairs condense (BCS)

Example 1: d-wave pairing by dissipation

- What is the parent Liouvillian for d-wave BCS?
- BCS-type state: number conserving

$$
\begin{aligned}
&\left|\mathrm{BCS}_{N}\right\rangle \sim\left(d^{\dagger}\right)^{N / 2}|\mathrm{vac}\rangle \\
& d^{\dagger}=\sum_{\mathbf{q}} \varphi_{\mathbf{q}} c_{\mathbf{q}, \uparrow}^{\dagger} c_{-\mathbf{q}, \downarrow}^{\dagger} \\
&=\sum_{i, j} \varphi_{i j} c_{i, \uparrow}^{\dagger} c_{j, \downarrow}^{\dagger} \quad \text { offsite pairing }
\end{aligned}
$$

d-wave pair

$$
\begin{aligned}
& \varphi_{q_{x}, q_{y}}=-\varphi_{-q_{y}, q_{x}}=\varphi_{-q_{x},-q_{y}} \\
& \varphi_{\mathbf{q}}=\cos q_{x}-\cos q_{y} \\
& \varphi_{i j}=\frac{1}{2} \sum_{\lambda=x, y} \rho_{\lambda}\left(\delta_{i, j+\mathbf{e}_{\lambda}}+\delta_{i, j-\mathbf{e}_{\lambda}}\right) \quad\left(\rho_{x}=1, \rho_{y}=-1\right)
\end{aligned}
$$

given the state, we want to find the Lindblad operators: "parent Liouvillian"

- master equation

$$
\begin{aligned}
& \dot{\rho}=-\mathrm{i} H_{\mathrm{eff}} \rho+\mathrm{i} \rho H_{\mathrm{eff}}^{\dagger}+\kappa \sum_{\ell} j_{\ell} \rho j_{\ell}^{\dagger} \\
& H_{\mathrm{eff}}=H-\frac{\mathrm{i}}{2} \kappa \sum_{\ell} j_{\ell}^{\dagger} j_{\ell}
\end{aligned}
$$

- Lindblad operators

$$
J_{i}^{\alpha}=\sum_{\lambda=x, y} \rho_{\lambda}\left(c_{i+\mathbf{e}_{\lambda}}^{\dagger}+c_{i-\mathbf{e}_{\lambda}}^{\dagger}\right) \sigma^{\alpha} c_{i} \quad(\alpha= \pm, z ; \alpha=x, y, z) \quad \begin{array}{cc}
(\alpha \text { ingle particle }, \\
c_{i}=\left(c_{i, \uparrow}, c_{i, \downarrow}\right)^{T} & \text { quasi local }
\end{array}
$$

- effective non-Hermitian Hamiltonian

$$
\begin{aligned}
& H_{\mathrm{eff}}=\left(U-\frac{\mathrm{i}}{2} \kappa\right) \sum_{i, a= \pm, z} J_{i}^{a \dagger} J_{i}^{a} \\
& J_{i}^{a}\left|\mathrm{BCS}_{N}\right\rangle=0 \quad \text { unique }
\end{aligned}
$$

Rem.: for $U>0$, d-wave ground state, i.e. we have also constructed a parent Hamiltonian for d-wave pairing

- "near" final BCS state: Bogoliubov-type analysis: (U=0)

$$
\begin{aligned}
H_{\mathrm{eff}} & =-\frac{\mathrm{i}}{2} \kappa \sum_{\mathbf{q}, \sigma}\left[\tilde{n}\left(c_{\mathbf{q}, \sigma}^{\dagger} c_{\mathbf{q}, \sigma}+\left|\varphi_{\mathbf{q}}\right|^{2} c_{\mathbf{q}, \sigma} c_{\mathbf{q}, \sigma}^{\dagger}\right)+\tilde{\Delta}_{\mathbf{q}} s_{\sigma} c_{-(\mathbf{q}, \sigma)} c_{\mathbf{q}, \sigma}+\text { h.c. }\right] \\
& =-\frac{\mathrm{i}}{2} \sum_{\mathbf{q}, \sigma} \kappa_{\mathbf{q}} \gamma_{\mathbf{q}, \sigma}^{\dagger} \gamma_{\mathbf{q}, \sigma}, \quad \text { with a "dissipative gap" } \quad \kappa_{\mathbf{q}}=\kappa \tilde{n}\left(1+\varphi_{\mathbf{q}}^{2}\right) \geq \kappa \tilde{n} . \\
\dot{\rho} & =-i H_{\mathrm{eff}} \rho+i \rho H_{\mathrm{eff}}^{\dagger}+\sum_{\mathbf{q}, \sigma} \kappa_{\mathbf{q}} \gamma_{\mathbf{q}, \sigma} \rho \gamma_{\mathbf{q}, \sigma}^{\dagger} \quad \text { with } \quad \gamma_{\mathbf{q}, \sigma}\left|\mathrm{BCS}_{\theta}\right\rangle=0
\end{aligned}
$$

- numerical illustration
entropy

fidelity of d-wave BCS

Remarks:

- Cold atom implementation:
- design atom - reservoir couplings

- Other interesting states ...

BEC

Laughlin (?)

Exotic Spin models (see below)
S. Diehl et al., Nature Physics 2008
B. Kraus et al., PRA 2008
H. Weimer et al., Nature Physics 2010
Q.: Identifying and engineering Lindblad operators, new physics ...?

- Example 2: driven BEC \& dynamical quantum phase transition

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\mathcal{L} \rho \\
& \text { interactions } \longrightarrow \text { drives to a BEC } \\
& \text { dynamical quantum phase transition } \\
& \text { nonequilibrium phase diagram }
\end{aligned}
$$

physical implementation with atoms in optical lattice
S. Diehl et al., Nature Physics 2008
B. Kraus et al., PRA 2008
S. Diehl et al. PRL 2010

Rydberg Quantum Simulator for Open System Dynamics

- Exotic spin models with atoms in 2D/3D optical lattices
M. Müller, I. Lesanovsky, H. Weimer, H. Büchler, PZ, PRL 2009
H. Weimer, M. Müller, I. Lesanovsky, PZ, H. Büchler, Nature Physics 2010
- Experimental demonstration of basic concepts: trapped ions
J. Barreiro, M. Müller, ..., PZ, R. Blatt, draft

Single Site Imaging (\& Addressing)

large spacing optical lattices:
\checkmark single site / atom addressing
\checkmark small tunneling: Hubbarek models
spin models
\checkmark long distance interactions (?)

Rydberg interactions

"Rydberg Quantum Simulator" for Spin Systems

- Large spacing optical lattices:
\checkmark addressable spins
- Rydberg - Rydberg interaction
\checkmark strong / long distance interactions
- Goal: Exotic Spin Models
\checkmark coherent n -spin interactions
\checkmark dissipative "cooling" dynamics

provides implementation for ...
A. Kitaev, Fault-tolerant quantum computation by anyons $(2003,2006)$
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological Quantum Memory (2002)

Kitaev’s Toric Code

Stabilizer states: "toric code"

- set of stabilizer operators: local, commuting

$$
\begin{aligned}
A_{p}|\psi\rangle & =|\psi\rangle \\
B_{s}|\psi\rangle & =|\psi\rangle
\end{aligned}
$$

- ground state of the Hamiltonian

$$
H=-\sum_{p} A_{p}-\sum_{s} B_{s}
$$

- topological phase with anyonic excitations:
- "magnetic" excitation: $\quad A_{p}|m\rangle=-|m\rangle$
- "charge" excitation: $\quad B_{s}|c\rangle=-|c\rangle$
- abelian statistics

Kitaev’s Toric Code

Stabilizer states: "toric code"

- set of stabilizer operators: local, commuting

$$
\begin{aligned}
A_{p}|\psi\rangle & =|\psi\rangle \\
B_{s}|\psi\rangle & =|\psi\rangle
\end{aligned}
$$

- ground state of the Hamiltonian

$$
H=-\sum_{p} A_{p}-\sum_{s} B_{s}
$$

- topological phase with anyonic excitations:
- "magnetic" excitation: $\quad A_{p}|m\rangle=-|m\rangle$
- "charge" excitation: $\quad B_{s}|c\rangle=-|c\rangle$
- abelian statistics

"magnetic excitation"

"magnetic excitation

A Toy Model

Goal: On a single plaquette ...

- Lindblad master equation

$$
\frac{d}{d t} \rho=-i[H, \rho]+\gamma\left(c \rho c^{\dagger}-\frac{1}{2} c^{\dagger} c \rho-\rho \frac{1}{2} c^{\dagger} c\right)
$$

- Coherent evolution: Hamiltonian

$$
S_{x}=\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

$$
H=h \sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

- Dissipative evolution: quantum jump operator

$$
c=\sqrt{\gamma} \sigma_{z}^{(1)}\left(1-\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}\right)
$$

pumping of stabilizer

A Toy Model

Goal: On a single plaquette ...

- Lindblad master equation

$$
\frac{d}{d t} \rho=-i[H, \rho]+\gamma\left(c \rho c^{\dagger}-\frac{1}{2} c^{\dagger} c \rho-\rho \frac{1}{2} c^{\dagger} c\right)
$$

- Coherent evolution: Hamiltonian

$$
H=h \sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

- Dissipative evolution: quantum jump operator

$$
c=\sqrt{\gamma} \sigma_{z}^{(1)}\left(1-\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}\right)
$$

Challenge:

How (efficiently) ...
\checkmark n-spin interactions
\checkmark n-spin quantum jump operators
... with Rydberg atoms
\& dipolar interactions

+ optical pumping

Remark 1: Quantum Simulation

Coherent Quantum Dynamics

- "analog" simulation

We "build" a quantum system with desired dynamics \& controllable parameters, e.g. Hubbard models of atoms in optical lattices

$$
H=-J \sum_{\langle i, j\rangle} b_{j}^{\dagger} b_{i}+\frac{1}{2} U \sum_{i} b_{i}^{\dagger 2} b_{i}^{2}
$$

example: bose (or fermi) Hubbard model

It is difficult to mimic n -body interactions \& constraints

$V^{(n)} \sim V^{(2)} \frac{1}{E-H} V^{(2)} \ldots V^{(2)} \frac{1}{E-H} V^{(2)} \rightarrow " 0 "$		
\uparrow	\uparrow	
n-body	2-body	effective n-body interactions in
perturbation theory	extended	Hubbard models

Coherent Quantum Dynamics

- "stroboscopic" or "digital" simulation

desired many body Hamiltonian "on the average"

Open Quantum Systems

- Q.: dissipative preparation of entangled states

- optical pumping (Kastler) or laser cooling

$$
\rho(t) \xrightarrow{t \rightarrow \infty}\left|g_{+}\right\rangle\left\langle g_{+}\right|
$$

driven dissipative dynamics "purifies" the state

Remark 2: Rydberg Gates

- efficient n-spin entangling gates

Two-Qubit Gate \& Dipole blockade

- atomic configuration

- dipole blockade

- theory: NIST, Orsay, Wisconsin, Aarhus, ...
- exp: Wisconsin (2009), Orsay (2009), ...
... and an "n-qubit CNOT" Rydberg Gate
- gate: ingredients
- atoms in a large spacing optical lattice: addressability
- Rydberg dipole-dipole

features:

\checkmark High fidelity even for moderately large \# qubits
\checkmark Fast 3 laser pulses
\checkmark Long-range interactions
\checkmark Robust with respect to

- inhomogeneities in the interparticle distances
- variations in the interaction strengths
- no mechanical effects
\checkmark experimentally realistic parameters

$$
G \underset{\substack{\text { Rydberg controller }}}{|0\rangle_{c}\langle 0| \otimes 1+|1\rangle_{c}\langle 1| \otimes} \frac{\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}}{\text { n-qubits }} \cdots
$$

Digital simulation: a single time step

general approach:
a) map the information on the four spins onto the auxiliary qubit
b) manipulation of the auxiliary atom
c) undo the mapping

Implementation of a single time step

example: four-body interactions $\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}$ in Kitaev's toric code
our multi-qubit CNOT-gate

$$
G=|0\rangle_{c}\langle 0| \otimes 1+|1\rangle_{c}\langle 1| \otimes \sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

Implementation of a single time step

Δ auxiliary atom factorizes out

- all +1 eigenstates have picked up a phase $\quad+\alpha$
- all -1 eigenstates have picked up a phase
$-\alpha$

$R=\exp \left(i \alpha \sigma_{z}^{(c)}\right)$
b) manipulation:
small local rotation of the control atom $\quad \alpha \ll 1$

$$
\begin{aligned}
|0\rangle|++--\rangle & \rightarrow e^{i \alpha}|0\rangle|++--\rangle \\
|1\rangle|+++-\rangle & \rightarrow e^{-i \alpha}|1\rangle|+++-\rangle
\end{aligned}
$$

\square composed evolution

$$
\left|\Psi^{\prime}\right\rangle=U|\Psi\rangle
$$

$$
U \equiv \exp (-i H \tau / \hbar)
$$

with

$$
H=-\frac{\hbar \alpha}{\tau} \sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

- stroboscopic simulation
- energy scale set by rotation angle α and gate duration τ can be on the order 100 kHz

Cooling: one dissipative time step

Δ goal: prepare the spin system in +1 eigenstates
Δ a) mapping

Δ b) conditional spin flip of one qubit

$$
C=|0\rangle_{c}\langle 0| \otimes 1+|1\rangle_{c}\langle 1| \otimes \exp \left(i \phi \sigma_{z}^{(1)}\right)
$$

$$
\begin{aligned}
|0\rangle|++--\rangle & \rightarrow|0\rangle|++--\rangle \\
|1\rangle|+++-\rangle & \rightarrow|1\rangle|-++-\rangle
\end{aligned}
$$

$$
|\Psi\rangle
$$

Julio Barreiro Markus Müller (exp) (theory)

R. Blatt's ion trap lab

Experiment with Trapped Ions

- 2+1 ions: Bell state cooling
- 4+1 ions "one plaquette": stabilizer cooling and 4-body interactions
- QND measurement of 4-qubit stabilizers

Julio Barreiro (exp: R. Blatt), M. Müller (theory)

Non-Equilibrium Dynamics on Optical Lattices:

 Heating \& Decoherence due Spontaneous Emission$$
\dot{\rho}=-i\left[H_{B H / F B}+\ldots, \rho\right]+\mathcal{L} \rho
$$

strongly correlated Hubbard dynamics decoherence,
e.g. spontaneous emission

- Q.: interplay decoherence \& many body
H. Pichler, A. Daley, and PZ, arXiv:1009.0194

Heating in optical lattices: single particle

- Spontaneous emission
red detuned lattice

$\begin{gathered}\text { Lamb-Dicke } \\ \text { parameter: }\end{gathered} \quad \eta=2 \pi a_{0} / \lambda \ll 1$
- Red detuning gives rise to more spontaneous emission events in deep lattices
- Processes returning atoms to the lowest band are strongly suppressed for blue detuning

N -boson master equation

- master equation for atoms in ground state:

$$
\dot{\rho}=-i\left(H_{\mathrm{eff}} \rho-\rho H_{\mathrm{eff}}^{\dagger}\right)+\mathcal{J}_{\mathrm{rad}} \rho
$$

- effective non-Hermitian Hamiltonian:

- single particle motion in optical lattice

$$
H_{0}=\int d^{3} x \hat{\psi}^{\dagger}(\boldsymbol{x})\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{\mathrm{opt}}(\boldsymbol{x})\right) \hat{\psi}(\boldsymbol{x})
$$

$$
V_{\mathrm{opt}}=\frac{|\Omega(\mathbf{x})|^{2}}{4 \Delta}
$$

N -boson master equation

- radiative processes
dipole-dipole interaction

$$
\begin{aligned}
H_{\mathrm{eff}}^{\mathrm{rad}}= & \iint d^{3} x d^{3} y \frac{\Gamma \Omega(\boldsymbol{y}) \Omega^{*}(\boldsymbol{x})}{4 \Delta^{2}} G\left(k_{e g}(\boldsymbol{x}-\boldsymbol{y})\right) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}^{\dagger}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{x}) \\
& -i \frac{1}{2} \int d^{3} x \frac{\Gamma|\Omega(\boldsymbol{x})|^{2}}{4 \Delta^{2}} \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x})-i \frac{1}{2} \iint d^{3} x d^{3} y \frac{\Gamma \Omega(\boldsymbol{y}) \Omega^{*}(\boldsymbol{x})}{4 \Delta^{2}} F\left(k_{e g}(\boldsymbol{x}-\boldsymbol{y})\right) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}^{\dagger}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{x}) \\
& \text { single particle optical pumping }
\end{aligned}
$$

recycling term: return of electron to ground state after emission

$$
\mathcal{J} \rho=\iint d^{3} x d^{3} y \frac{\Gamma \Omega(\boldsymbol{x}) \Omega(\boldsymbol{y})}{4 \Delta^{2}} F\left(k_{e g}(\boldsymbol{x}-\boldsymbol{y})\right) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x}) \rho \hat{\psi}^{\dagger}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{y})
$$

N -boson master equation

- Imaging Hubbard models: Harvard, Munich, Chicago, Penn State, ...

0.8 spontaneous emission localizes the particle to ~ wavelength
recycling term: return of electron to ground state after emission

$$
\mathcal{J} \rho=\iint d^{3} x d^{3} y \frac{\Gamma \Omega(\boldsymbol{x}) \Omega(\boldsymbol{y})}{4 \Delta^{2}} F\left(k_{e g}(\boldsymbol{x}-\boldsymbol{y})\right) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x}) \rho \hat{\psi}^{\dagger}(\boldsymbol{y}) \hat{\psi}(\boldsymbol{y})
$$

N -boson master equation

- short range collisions \& light induced collisions
two atoms on one lattice site collisions
two atoms on one lattice site

$$
H_{\text {eff }}^{\text {coll }}=\int d^{3} x\left(g(\boldsymbol{x})-i \frac{1}{2} \gamma_{2}(\boldsymbol{x})\right) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}^{\dagger}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x}) \hat{\psi}(\boldsymbol{x}) \text {; }
$$

contact potential:
real \& light induced imaginary scattering length
Born-Oppenheimer potential

Hubbard Master Equation

- projecting of Wannier functions ...

$$
\dot{\rho}=-i[\hat{H}, \rho]+{\underset{\text { band }}{\sum_{\boldsymbol{n}} h}}_{\gamma_{\boldsymbol{n}, \mu}}^{\chi_{\text {site }}}\left(b_{\boldsymbol{n}, \boldsymbol{i}}^{\dagger} b_{0, \boldsymbol{i}} \rho b_{0, \boldsymbol{i}}^{\dagger} b_{\boldsymbol{n}, \boldsymbol{i}}-\frac{1}{2} b_{0, \boldsymbol{i}}^{\dagger} b_{\boldsymbol{n}, \boldsymbol{i}} b_{\boldsymbol{n}, \boldsymbol{i}}^{\dagger} b_{0, \boldsymbol{i}} \rho-\rho \frac{1}{2} b_{0, \boldsymbol{i}}^{\dagger} b_{\boldsymbol{n}, \boldsymbol{i}} b_{\boldsymbol{n}, \boldsymbol{i}}^{\dagger} b_{0, \boldsymbol{i}}\right)
$$

Hubbard
decoherence

- Solution
- time dependent perturbation theory in spontaneous emission
- tDMRG + quantum trajectories

$$
\dot{\rho}=-i\left[H_{B H}, \rho\right]+\sum_{i} \gamma\left(\hat{n}_{i} \rho \hat{n}_{i}-1 / 2 \hat{n}_{i} \hat{n}_{i} \rho-1 / 2 \rho \hat{n}_{i} \hat{n}_{i}\right)
$$

- mean field Gutzwiller:

Heating in optical lattices: single particle

- Spontaneous emission
red detuned lattice

- total light scattering rate

blue detuned lattice

- energy heating rate / atom

$$
\dot{E}=\frac{\Gamma\left|\Omega_{0}\right|^{2}}{4 \Delta^{2}} E_{R}
$$

heating is the same in red and blue lattice

Destruction of Coherence, Collisions etc.

- spontaneous emission = localization

- collisions

collisions do not necessarily thermalize on experimental time scales; this is particularly true for excited bands

Destruction of Coherence, Collisions etc.

- decay of off-diagonal single particle correlation functions

$$
S(i, j)=\left\langle b_{i}^{\dagger} b_{j}\right\rangle
$$

- decay of initial correlations

Summary

- Driven Dissipative State Preparation
- Example 1: d-wave pairing by dissipation
- [Example 2: driven BEC \& quantum phase transition]
- Rydberg Quantum Simulator for Open System Dynamics
- Example: Kitaev toric code \& stabilizer pumping
- [an ion trap experiment: "single plaquette"]
- Decoherence / heating: spontaneous emission in opt. lattices

[^0]: WS Bakr, JI Gillen, A Peng, S Fölling, M Greiner - Nature, 2009

