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Cold Atoms and Molecules:
     Optical Lattices 
     → Self-assembled Lattices

Friday Morning Session

Guido Pupillo (Innsbruck)

Announced Title:

• Polar Molecules & “Rydberg dressed” atoms
- dipolar quantum gases in 2D & “shaped” interaction potentials

Superfluid Crystals
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FIG. 1: Snapshots of a system of bosons interacting via po-
tential (1), at the four different temperatures 200 (a), 20 (b),
1.0 (c) and 0.1 (d), expressed in units of �◦. Points shown are
taken along individual particle world lines. The nominal value
of rs in this case is 0.14, whereas the cutoff of the potential
(1) is Rc=0.3.

potential at short distances does not play an important
role, and the low temperature phase diagram of (2) is
that of purely dipolar bosons in two dimensions, investi-
gated previously by several authors [14, 15]. It is known
that for rs

<∼ rC
s = 0.06 the ground state of the system

is a triangular crystal, whereas for rs
>∼ rL

s = 0.08 it is
a uniform superfluid (in the intermediate density range
a more complex scenario is predicted [16]). As we show
below, a very different physics sets in when Rc

>∼ rs, in
the density ranges which correspond to either the crys-
talline or superfluid phase in the purely dipolar system.
Fig. 1 shows typical configurations (i.e., particle world

lines) produced by Monte Carlo simulations of a system
of bosons interacting via the potential (1), at a nominal
density corresponding to rs = 0.14, at different temper-
atures spanning three orders of magnitude. The value of
the cutoff Rc in this case is 0.3. At the highest temper-
ature, a simple classical gas phase is observed, as shown
by the pair correlation function g(r), shown in Fig. 2 (a),
which is just a constant (note that g(r) does not vanish
at the origin, owing to the flattening off of the potential
at short distance). As T is decreased, an intriguing ef-
fect takes place, namely particles bunch into mesoscopic
droplets, in turn forming a regular (triangular) crystal.
This is shown qualitatively in the snapshots in Fig. 1, but
also confirmed quantitatively by the structure of the g(r)
as well (Fig. 2(a)), which displays pronounced, broad
maxima, as well as well-defined minima, where the func-
tion approaches zero. We henceforth refer to this phase
as the droplet-crystal phase.
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FIG. 2: (Color online) Results shown are for rs=0.14 and
Rc=0.3. Temperature is in units of �◦. (a): Pair correla-
tion function g(r) at a temperature T= 200 (triangles), 20
(squares), 1.0 (diamonds) and 0.1 (circles). The simulated
system comprises N=200 particles. (b): Superfluid density
vs. T for systems with N=100 (square), and 200 (diamond)
particles. (c): Frequency of occurrence of permutation cycles
of length L at the same four temperatures reported in panel
(a). Longer permutation cycles occur at lower temperature.

The formation of such droplets is a purely classical
effect, that depends on the flattening off of the repul-
sive inter-particle potential below the cutoff distance. In
fact, a simple estimate of the number Nd of particles per
droplet, can be obtained by considering a triangular lat-
tice of point-like dipoles, each one of strength ∝ Nd (as
it comprises Nd particles), and by minimizing with re-
spect to Nd the potential energy per particle, for a fixed
density. The result is

Nd = γ

�
Rc

rs

�2

(3)

where γ ≈ 2.79. Eq. (3) furnishes a fairly accurate esti-
mate of Nd for the (wide) range of values of the param-
eters rs and Rc explored here. For instance, using the
parameters of Fig. 1, we find from (3) Nd ≈ 13, which
agrees quite well with our simulation result. It is worth
noting that a similar sort of pattern formation, due to
competing interactions, has been previously established
for classical colloidal systems [17, 18].

Supersolid Droplets
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Outline

• Open System Dynamics → Desired Many Body State
-  d-wave pairing by dissipation

• Rydberg Quantum Simulator for Open System Dynamics
- Example: Kitaev toric code & stabilizer pumping
- [an ion trap experiment: “single plaquette”]

• Decoherence / heating: spontaneous emission in opt. lattices
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Single Site Imaging (& Addressing)

4

• Imaging Hubbard models:
Harvard, Munich, Chicago, Penn State, ...

of a phase hologram. This is in contrast to conventional optical lattice
experiments in which lattice potentials are created by superimposing
separate laser beams to create optical standing waves. The advantage
of thenewmethod is that the geometry of the lattice is directly givenby
the pattern on the mask. The imaged light pattern, and hence the
potential landscape, can be arbitrary within the limits set by the avail-
able imaging aperture and by polarization effects that can arise due to
the large aperture imaging beyond the paraxial limit. Here, we create
blue detuned square lattice potentials with a periodicity a5 640 nm
and an overall Gaussian envelope. Amajor additional advantage is the
fact that the lattice geometry is not dependent on the wavelength20,
apart from diffraction limits and chromatic aberrations in the lens for
large wavelength changes. This allows us to use spectrally wide ‘white’
light with a short coherence length to reduce unwanted disorder from
stray light interference.With a light source centred around 758 nm,we
generate a conservative lattice potential with a lattice depth of up to 35
Erec, where Erec5 h2/8ma2 is the recoil energy of the effective lattice
wavelength, with m the mass of 87Rb.

The projection method also enables us to dynamically change the
wavelength of the lattice light without changing the lattice geometry.
This is important, as we strongly increase the lattice depth for site-
resolved imaging in order to suppress diffusion of the atoms between
sites due to recoil heating by the imaging light13. For this, we switch
the light in the 2D lattice and the vertical standing wave to near-
resonant narrow band light, increasing the lattice depth to 5,500
Erec (to 380 mK). The main use of the microscope set-up is the col-
lection of fluorescence light and high-resolution imaging of the
atoms. With the atoms pinned to the deep lattice, we illuminate
the sample with red detuned near-resonant light in an optical
molasses configuration, which simultaneously provides sub-
Doppler cooling24,25. Figure 2 shows a typical image obtained by
loading the lattice with a very dilute cloud, showing the response
of individual atoms. The spot function of a single atom can be
directly obtained from such images. We measure a typical single
atom emission FWHM size as 570 nm and 630 nm along the x and
y direction, respectively, which is close to the theoretical minimum
value of,520 nm (Fig. 3). This minimum is given by the diffraction
limit from the objective combined with the finite size of the camera

pixels and the expected extent of the atom’s on-site probability dis-
tribution within the lattice site during the imaging process. As the
same high-resolution optics are used to generate both the lattice and
the image of the atoms on the CCD camera, the imaging system is
very stable with respect to the lattice, which is important for single-
site addressing26. The observed drifts in the 2D plane are very low, less
than 10% of the lattice spacing in one hour with shot to shot fluctua-
tions of less than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high
due to the strong confinement in the lattice. When resonantly illu-
minated, such pairs undergo light assisted collisions and leave the
trap within a time of the order of 100 ms, long before they emit
sufficient photons to be detected27. Therefore the remaining number
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Figure 1 | Diagram of the quantum gas microscope. The two-dimensional
atom sample (a) is located a few micrometres below the lower surface of a
hemispherical lens inside the vacuum chamber. This lens serves to increase
the numerical aperture (NA) of the objective lens outside the vacuum (b) by
the index of refraction, from NA5 0.55 to NA5 0.8. The atoms are
illuminated from the side by the molasses beams (c) and the scattered
fluorescence light is collected by the objective lens and projected onto a CCD
camera (d). A 2D optical lattice is generated by projecting a periodic mask
(e) onto the atoms through the same objective lens via a beam splitter
(f). The mask is a periodic phase hologram, and a beam stop (g) blocks the
residual zeroth order, leaving only the first orders to form a sinusoidal
potential.
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Figure 2 | Imaging single atoms. a, Field of viewwith sparse site occupation.
b, Response of a single atom, derived from sparse images: shown are
horizontal (filled circles) and vertical (open circles) profiles through the
centre of the image generated by a single atom. The black line shows the
expected Airy function for a perfect imaging system with a numerical
aperture of 0.8. The blue dashed line denotes the profile expected from a
single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location.
The data are from the responses of 20 atoms in different locations within the
field of view which have been precisely superimposed by subpixel shifting
before averaging.

5 μm

640 nm

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loadedwith a high density Bose–Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.

NATURE |Vol 462 |5 November 2009 LETTERS

75
 Macmillan Publishers Limited. All rights reserved©2009

Site-resolved imaging of single atoms on a 
640-nm-period optical lattice, loaded with a 
high density BEC
WS Bakr, JI Gillen, A Peng, S Fölling, M Greiner - Nature, 2009

measure
single site/atom

single shot
string measurement

address 
atom

entangle

• Addressable lattices
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Preparing “interesting” (pure) many body states … & AMO

• cold atoms in optical lattices• condensed matter physics

• quantum computing & resources

ρ ∼ e−H/kBT T→0−−−→ |Eg� �Eg|

cooling to ground state
strongly correlated states

e−iHt

qubits

coherent Hamiltonian evolution
    - quantum gates

time

equilibrium cond mat

|ψ� → Ut |ψ�

5

laser

engineering Hamiltonians
quantum simulation

• trapped ions

general purpose
quantum computing
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Preparing “interesting” (pure) many body states … & AMO

• cold atoms in optical lattices• condensed matter physics

ρ ∼ e−H/kBT T→0−−−→ |Eg� �Eg|

cooling to ground state
strongly correlated states

laser

engineering Hamiltonians
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qubits

coherent Hamiltonian evolution
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addressable optical lattices

• quantum computing & resources

Monday, October 11, 2010



system

environ-
ment

U
ρ

ρenv

E(ρ)

decoherence ☹ 

 not 
observed

entanglement with environment
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    - quantum operations
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Here ...
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Q.: prepare given pure many body 
state by open system dynamics?
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• quantum optical systems as driven 
open quantum systems

ρ(t) t→∞−−−→ |D� �D|

Λ-system: EIT, STIRAP, …, VSCPT

optical pumping

steady state as pure “dark state”
here: … on a single particle level

Q.: prepare given pure many body 
state by open system dynamics?

Monday, October 11, 2010



• open quantum system
    - quantum operations

system

environ-
ment

U
ρ

ρenv

E(ρ)

ρ→ E(ρ) =
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EkρE†
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= |ψ� �ψ|
!?

 not 
observed

bathsystem
drive

dρ

dt
= −i [H, ρ] + Lρ master equation

competing dynamics

 

“non-equilibrium cooling”

Q.: engineer quantum reservoirs & 
couplings in many body system?

steady state

ρ(t) t→∞−−−→ ρss

!?= |D� �D|

mixed state

pure state 
(“dark state”)

10

• quantum optical systems as driven 
open quantum systems

Q.: prepare given pure many body 
state by open system dynamics?
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… Many Body “Dark States” qubits or particles on a lattice

quasi-local Lindblad operators 

• master equation

dρ

dt
= −i [H, ρ] + Lρ

Lρ ≡
Nc�

α=1

κα

�
2cαρc†α − c†αcαρ− ρc†αcα

�
Liouville

Lindblad operators

cα

• Engineering {H,L} so that a given |D� is a dark state:

(i) ∀α cα |D� = 0
(ii) H |D� = E |D�

ρ(t) t→∞−−−→ |D� �D|
engineer quantum reservoirs

B. Kraus et al., PRA 2008

constructing 
“parent 

Liouvillians”
uniqueness

Monday, October 11, 2010
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• Example 1: d-wave pairing by dissipation

Q.: Identifying and engineering Lindblad operators,
      new physics … ?

S. Diehl, W. Yi, A. J. Daley, PZ, PRL 2010 (in print)
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Motivation: Repulsive 2D fermionic Hubbard model

13

Hubbard Hamiltonian

doping

T

Fermi liquid
Non-Fermi liquid

N
ée

l o
rd

er

superconductivity

strange metal

pseudo
gap

half-filling (parent compounds):
superposition of singlet coverings

hole-doping: 
hole pairs condense (BCS)

+ + ... + + ...

doped resonant valence 
bond (RVB) state (?)

mean field description: Gutzwiller projected BCS-state with d-
wave Cooper pairs
here: pairing due to interactions. Can we induce pairing by coupling to an 
environment? Can we “cool” to paired states?
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• BCS-type state: number conserving

Example 1: d-wave pairing by dissipation

14

Below we treat the example of a d-wave-paired BCS state
of two-component fermions in 2D, showing how the pairing
can be generated via purely dissipative processes. A BCS-
type state is the conceptually simplest many body wave
function describing a condensate of N paired spin-1/2 fermionic
particles,

|BCSN � ∼ (d†)N/2|vac�

d†=
�

q

ϕqc
†
q,↑c

†
−q,↓

=
�

i,j

ϕijc
†
i,↑c

†
j,↓

or d† =
�

i,j ϕijc
†
i,↑c

†
j,↓, where c†q,σ (c†i,σ) denotes the cre-

ation operator for fermions with quasimomentum q (on lat-
tice site i) and spin σ =↑, ↓, and ϕq (ϕij) the momentum
(position) wave function of the pairs. In the case of d-wave
pairing, the pair wave function obeys

ϕqx,qy = −ϕ−qy,qx = ϕ−qx,−qy
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ϕij =
1

2

�

λ=x,y

ρλ(δi,j+eλ + δi,j−eλ) (ρx = 1, ρy = −1)

with ρx = 1, ρy = −1 corresponding to the limit of well lo-

calized pairs (see Fig. 1a). [[ OUT? COMES BELOW For

reference below we remark that in BCS theory, with pair-

ing induced by coherent interactions, the corresponding en-

ergy gap function would be ∆q = ∆ (cos qx − cos qy) in the

molecular limit.]]

While in the standard scenario BCS-type states are typi-

cally used as variational mean-field wavefunctions to de-

scribe pairing due to interactions, here the system is dis-

sipatively driven towards the (pure) many body BCS state,

ρ(t) = e
Ltρ(0)

t→∞−→ |BCSN ��BCSN |, beginning from an ar-

bitrary initial mixed state ρ(0). The dynamics of the density

matrix for the N -particle system ρ(t) are generated by a Li-

ouville operator with the structure Lρ = −iHeffρ + iρH†
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At late times, we can then expand the state around
|BCSθ� with the ansatz ρ =

�
q ρq, where ρq contains

the two momentum modes ±q necessary to describe pair-
ing. Using the projection prescription ρq = tr �=qρ, we
then find the equations of motion for the single pair den-
sity matrices ρq in the presence of nonzero mean fields
resulting from a coupling to other momentum modes,
whose values are dictated by the proximity to the final
state. The resulting effective Hamiltonian is quadratic
and given by

Heff = − iκ
2

�

q,σ

�
ñ(c†q,σcq,σ + |ϕq|2cq,σc†q,σ) (2)

+∆̃qsσc−(q,σ)cq,σ + h.c.
�
= − i

2

�

q,σ

κqγ
†
q,σγq,σ,

with s↑ = −1, s↓ = 1 and dimensionless ”gap function”
∆̃q = ∆̃ϕq, and where the diagonal and off diagonal

mean fields evaluate to ñ = |∆̃| = 2
�

dq
(2π)2

|ϕq|2
1+|ϕq|2 ≈

0.72 on the d-wave state. The effective Hamiltonian is
diagonalized in the second line, introducing quasiparticle
Lindblad operators

γq,σ =
1�

1 + ϕ2
q

(c−q,σ + sσϕqc
†
q,−σ).

In this basis, the resulting master equation reads ∂tρ =
−iHeffρ+iρH†

eff+
�

q,σ κqγq,σργ†
q,σ. The linearized Lind-

blad operators have analogous properties to quasiparticle
operators familiar from interaction pairing problems: (i)
They annihilate the (unique) steady state γq,σ|BCSθ� =
0; (ii) they obey the Dirac algebra {γq,σ, γ†

q�,σ�} =
δq,q�δσ,σ� and zero otherwise [? ]; and (iii) therefore are
related to the original fermions via a canonical transfor-
mation. The imaginary spectrum of the effective Hamil-
tonian features a ”dissipative pairing gap”

κq = κ ñ (1 + ϕ2
q) ≥ κ ñ.

The dissipative gap implies an exponential approach to
steady state d-wave BCS state for long times. This can
be most easily seen in a quantum trajectory represen-
tation of the master equation, where the time evolu-
tion of the system is described by a stochastic system
wavefunction |ψ(t)� undergoing a time evolution with
non-hermitian Hamiltonian |ψ(t)� = e

−iHeff t|ψ(0)�/ �. . .�
interrupted with rate κ �j�|ψ(t)��2 by quantum jumps
|ψ(t)� → j�|ψ(t)�/ �. . .� so that ρ(t) = �|ψ(t)��ψ(t)|�stoch.
We thus see that (i) the BCS state is a ”dark state” of the
dissipative dynamics in the sense that j�|BCSN � = 0 im-
plies that there will never be quantum jump, i.e. the state
remains in |BCSN �, and (ii) states near |BCSN � show a
exponential decay according to the dissipative gap. Note
that it is in marked contrast to dissipative preparation of
a non-interacting BEC state in bosonic systems, where
an approach polynomial in time is expected [12].

FIG. 1. (a) Symmetry in the d-wave state, represented by
a single offsite fermion pair exhibiting the characteristic sign
change under spatial rotations. In a d-wave BCS state, this
pair is delocalized over the whole lattice. (b,c) The dissi-
pative pairing mechanism builds on both (b) Pauli blocking
and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a
Néel state (see text). (c) The d-wave state may be seen as a
delocalization of these pairs away from half filling.

This convergence to a unique pure state is illustrated
in Fig. 2 using numerical simulations for small systems.
In Fig. 2a we show convergence to a pure state via the
entropy of the full density matrix for a small 1D system,
and in Fig. 2b. the fidelity of the BCS state for a small
2D grid as a function of time, computed via the quantum
trajectories method.
Lindblad operators for D-wave states – We now turn

to the construction of the Lindblad operators for the d-
wave BCS state as given in Eq. (1). We will perform this
construction first for an antiferromagnetic Néel state at
half filling, and then generalize to the BCS state. Our
task can be formulated as finding for a given many body
state |d� a set of (non-hermitian) Lindblad operators j�

so that it becomes the unique ”dark state”, j�|d� = 0
∀l. Both the Néel and the BCS state have product form,
|d� =

�
m
d
†
m
|vac�. Thus, we note as a sufficient dark

state condition [j�, d†m] = 0.
There are two antiferromagnetic Néel states at

half filling |N+� =
�

i∈A
c
†
i+ex,↑c

†
i,↓|vac�, |N−� =

�
i∈A

c
†
i+ex,↓c

†
i,↑|vac� with A a sublattice in a two-

dimensional bipartite (square) lattice, which differ by
an overall spin flip. Introducing “Néel unit cell op-
erators” Ŝ

a

i,ν = c
†
i+eν

σa
c
†
i
, a = ±, eν = {±ex,±ey},

whose usefulness will become apparent soon, the state
can be written in eight different forms, |N±� =�

i∈A
Ŝ
±
i,ν |vac� = (−1)M/2

�
i∈B

Ŝ
∓
i,−ν |vac�, with M the

lattice size. We then see that the Lindblad operators
must obey [ja

i,ν , Ŝ
b

j,µ
] = 0 for all i, j located on the same

sublattice A or B, which is fulfilled for the set

j
a

i,ν = c
†
i+eν

σa
ci, i ∈ A orB. (3)

• What is the parent Liouvillian for d-wave BCS?

d-wave pair• “dissipative d-wave pairs”

given the state, we want to find the Lindblad operators: “parent Liouvillian”

S. Diehl
A. Daley
Wei Yi

offsite pairing
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κ
�

� j�ρj
†
� with non-hermitian effective Hamiltonian Heff =

H− i
2κ

�
� j

†
� j�. Here, {j�} are non-hermitian Lindblad oper-

ators reflecting the system-bath coupling with strength char-

acterized by the rate κ. The Hamiltonian H generates stan-

dard unitary evolution, and will be set to zero for most of the

discussion. The pure paired BCS state being the unique

steady state of the dissipative dynamics results from the

possibility to identify a set of operators with j�|BCSN � = 0
∀� [?].

Below, we will identify these operators j� for the d-wave

paired BCS states, and in addition study the dynamics close

to the final steady state, i.e., near |BCSN �. We can then

investigate the complex excitation spectrum of L, where,

remarkably, we find a dissipative “BCS gap” that implies ex-

ponential approach to the steady state.

We can readily check that the Lindblad operators j� gener-

ating the d-wave BCS state are given by

J
α
i =

�

λ=x,y

ρλ(c
†
i+eλ

+ c
†
i−eλ

)σα
ci (α = ±, z; α = x, y, z) single particle,

quasi localwith 2-spinor
ci = (ci,↑, ci,↓)

T

and σα Pauli matrices with α = ±, z or α = x, y, z. An
explicit construction of these operators will be given below.
Remarkably, these operators are bilinear and number con-
serving, corresponding to dissipative generation of pairing
from single-particle processes only. They are also quasi-
local operators, involving only a plaquette of nearest neigh-
bor sites (see Fig. 1a).

Before entering the more technical discussion of obtain-
ing these Jα

i , we discuss the dynamics for states close
to the final state |BCSN �, where the physics is particularly
transparent and analogies to the usual case of interaction-
induced pairing in BCS theory can be made. For states
close to |BCSN � we can linearize the master equation dy-
namics using a Bogoliubov-type approach. For this pur-
pose it is convenient to give up exact particle number con-
servation, and we work with fixed phase coherent states
|BCSθ� = N−1/2 exp(eiθd†)|vac� instead of the number states
|BCSN � [?], where N =

�
q(1 + ϕ2

q) ensures the normal-
ization. The density matrix for these states factorises as

• Lindblad operators

• effective non-Hermitian Hamiltonian

above. For J
−
i , one exchanges the spins with a π-pulse,

whereas for Jz
i , one must applying a π/2 rotation in the nu-

clear spin basis before and after the operation. In addition,

for Jz
i , both spin states should be excited, and coherence

of nuclear spins is maintained throughout the operation, as

described in Ref. [?]. This scheme can be generalised to

2D by considering 3-by-3 plaquettes defined by the appro-

priate superlattice potential for the 3P0 level. As in the 1D

case, we require an adiabatic manipulation of this poten-

tial in step (ii), although here the depths of the wells must

be adjusted to ensure that the correct relative phases are

obtained for atoms “transported” in different directions.

The d-wave parent Hamiltonian – As a final remark, we note

that the effective Hamiltonian in the above discussion can

be generalized to include a coherent interaction term U ,

Heff = (U − i

2
κ)
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i,a=±,z

J
a†
i J

a
i

J
a
i |BCSN � = 0

. For κ → 0 and interaction U > 0 this Hamiltonian can

be identified as a parent Hamiltonian with |BCSN � as stable
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At late times, we can then expand the state around
|BCSθ� with the ansatz ρ =

�
q ρq, where ρq contains

the two momentum modes ±q necessary to describe pair-
ing. Using the projection prescription ρq = tr �=qρ, we
then find the equations of motion for the single pair den-
sity matrices ρq in the presence of nonzero mean fields
resulting from a coupling to other momentum modes,
whose values are dictated by the proximity to the final
state. The resulting effective Hamiltonian is quadratic
and given by

Heff = − iκ
2

�

q,σ

�
ñ(c†q,σcq,σ + |ϕq|2cq,σc†q,σ) (2)

+∆̃qsσc−(q,σ)cq,σ + h.c.
�
= − i

2

�

q,σ

κqγ
†
q,σγq,σ,

with s↑ = −1, s↓ = 1 and dimensionless ”gap function”
∆̃q = ∆̃ϕq, and where the diagonal and off diagonal

mean fields evaluate to ñ = |∆̃| = 2
�

dq
(2π)2

|ϕq|2
1+|ϕq|2 ≈

0.72 on the d-wave state. The effective Hamiltonian is
diagonalized in the second line, introducing quasiparticle
Lindblad operators

γq,σ =
1�

1 + ϕ2
q

(c−q,σ + sσϕqc
†
q,−σ).

In this basis, the resulting master equation reads ∂tρ =
−iHeffρ+iρH†

eff+
�

q,σ κqγq,σργ†
q,σ. The linearized Lind-

blad operators have analogous properties to quasiparticle
operators familiar from interaction pairing problems: (i)
They annihilate the (unique) steady state γq,σ|BCSθ� =
0; (ii) they obey the Dirac algebra {γq,σ, γ†

q�,σ�} =
δq,q�δσ,σ� and zero otherwise [? ]; and (iii) therefore are
related to the original fermions via a canonical transfor-
mation. The imaginary spectrum of the effective Hamil-
tonian features a ”dissipative pairing gap”

κq = κ ñ (1 + ϕ2
q) ≥ κ ñ.

The dissipative gap implies an exponential approach to
steady state d-wave BCS state for long times. This can
be most easily seen in a quantum trajectory represen-
tation of the master equation, where the time evolu-
tion of the system is described by a stochastic system
wavefunction |ψ(t)� undergoing a time evolution with
non-hermitian Hamiltonian |ψ(t)� = e

−iHeff t|ψ(0)�/ �. . .�
interrupted with rate κ �j�|ψ(t)��2 by quantum jumps
|ψ(t)� → j�|ψ(t)�/ �. . .� so that ρ(t) = �|ψ(t)��ψ(t)|�stoch.
We thus see that (i) the BCS state is a ”dark state” of the
dissipative dynamics in the sense that j�|BCSN � = 0 im-
plies that there will never be quantum jump, i.e. the state
remains in |BCSN �, and (ii) states near |BCSN � show a
exponential decay according to the dissipative gap. Note
that it is in marked contrast to dissipative preparation of
a non-interacting BEC state in bosonic systems, where
an approach polynomial in time is expected [12].

FIG. 1. (a) Symmetry in the d-wave state, represented by
a single offsite fermion pair exhibiting the characteristic sign
change under spatial rotations. In a d-wave BCS state, this
pair is delocalized over the whole lattice. (b,c) The dissi-
pative pairing mechanism builds on both (b) Pauli blocking
and (c) delocalization via phase locking. (b) Illustration of
the action of Lindblad operators using Pauli blocking for a
Néel state (see text). (c) The d-wave state may be seen as a
delocalization of these pairs away from half filling.

This convergence to a unique pure state is illustrated
in Fig. 2 using numerical simulations for small systems.
In Fig. 2a we show convergence to a pure state via the
entropy of the full density matrix for a small 1D system,
and in Fig. 2b. the fidelity of the BCS state for a small
2D grid as a function of time, computed via the quantum
trajectories method.
Lindblad operators for D-wave states – We now turn

to the construction of the Lindblad operators for the d-
wave BCS state as given in Eq. (1). We will perform this
construction first for an antiferromagnetic Néel state at
half filling, and then generalize to the BCS state. Our
task can be formulated as finding for a given many body
state |d� a set of (non-hermitian) Lindblad operators j�

so that it becomes the unique ”dark state”, j�|d� = 0
∀l. Both the Néel and the BCS state have product form,
|d� =

�
m
d
†
m
|vac�. Thus, we note as a sufficient dark

state condition [j�, d†m] = 0.
There are two antiferromagnetic Néel states at

half filling |N+� =
�

i∈A
c
†
i+ex,↑c

†
i,↓|vac�, |N−� =

�
i∈A

c
†
i+ex,↓c

†
i,↑|vac� with A a sublattice in a two-

dimensional bipartite (square) lattice, which differ by
an overall spin flip. Introducing “Néel unit cell op-
erators” Ŝ

a

i,ν = c
†
i+eν

σa
c
†
i
, a = ±, eν = {±ex,±ey},

whose usefulness will become apparent soon, the state
can be written in eight different forms, |N±� =�

i∈A
Ŝ
±
i,ν |vac� = (−1)M/2

�
i∈B

Ŝ
∓
i,−ν |vac�, with M the

lattice size. We then see that the Lindblad operators
must obey [ja

i,ν , Ŝ
b

j,µ
] = 0 for all i, j located on the same

sublattice A or B, which is fulfilled for the set

j
a

i,ν = c
†
i+eν

σa
ci, i ∈ A orB. (3)

unique

Rem.: for U>0, d-wave ground state,
i.e. we have also constructed a parent 
Hamiltonian for d-wave pairing

• master equation

ρ̇ = −iHeffρ+ iρH†
eff + κ

�
� j�ρj

†
�

Heff = H − i
2κ

�
� j

†
� j�
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• numerical illustration
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3

Note that these operators can be obtained from Ŝa
i,ν by

a particle-hole transformation c†i,σ → ci,σ on the central
site i. For the action of the operators jai,ν the assump-
tion of fermionic statistics is essential, as illustrated in
Fig. 1b: they generate spin flipping transport according
to e.g. j+i,ν = c†i+eν ,↑ci,↓, which is not possible when the
antiferromagnetic order is already present. The proof of
uniqueness of the Néel steady state up to double degen-
eracy is then trivial: The steady state must fulfill the
quasilocal condition that for any site occupied by a cer-
tain spin, its neighboring sites must be filled by opposite
spins. For half filling, the only states with this property
are |N±�. This residual twofold degeneracy can be lifted
by adding a single operator ji = c†i+eν

(1 + σz)ci on an
arbitrary site i.

To find the Lindblad operators for the d-wave BCS
state, we apply a similar strategy. We first rewrite the
d-wave generator using the operators Ŝa

i ,

d† = i
2

�

i

(c†i+ex
− c†i+ey

)σyc†i =
a
2

�

i

D̂a
i , (4)

D̂a
i =

�

ν

ρν Ŝ
a
i,ν ,

where ρ±x = 1, ρ±y = −1, and the quasilocal d-wave

pair D̂a
i may be seen as the ”d-wave unit cell operators”.

Note the freedom of choosing a = ± in writing the state.
This form makes the physical picture of a d-wave super-
fluid as delocalized antiferromagnetic order away from
half filling [3, 14] particularly apparent. The condition
[Jα

i ,
�

j D̂
b
j ] = 0 (α = (a, z)) is fulfilled by

Ja
i =

�

ν

ρνj
a
i,ν , Jz

i =
�

ν

ρνj
z
i,ν ,

with jzi,ν = c†i+eν
σzci, establishing Eq. (1). Similar to

above, each Ja
i is obtained from D̂a

i by a particle-hole
transformation on the central site i. In fact, for these
operators the stronger quasi-local commutation proper-
ties with the molecular d-wave pairs holds due to Eq.
(3): [Ja

i , D̂
a
j ] = 0 for all i, j, [Ja

i , D̂
b
j ] = 0 for all i, j in the

same sublattice, which relies again on fermionic statis-
tics. In contrast, the operators Jz

i only commute with the
symmetric superposition of all d-wave pairs D̂a

j . These
operators establish coherence via phase locking between
adjacent cloverleaves of sites.

The question of uniqueness of the Lindblad opera-
tors (1) is equivalent to the uniqueness of the ground
state of the associated hermitian Hamiltonian H =
U
�

i,α=±,z J
α†
i Jα

i for U > 0. We note that our BCS
state shares the symmetries of the Hamiltonian of global
phase and spin rotations, and translation invariance. As-
suming that no other symmetries exist, we expect the
ground state to be unique. Note, however, the necessity
of the full set {Jα

i }: Omitting e.g. {Jz
i } gives rise to an

additional discrete symmetry in H resulting in ground
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4×3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.

state degeneracy. These results are confirmed with nu-
merical diagonalizations for small system sizes and pe-
riodic boundary conditions, and from master equation
simulations where |BCSN � is established as the unique
pure steady state for arbitray mixed state initial condi-
tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N� = O†N
k,n,µ|vac�,

where O†
k,n,µ =

�
i exp ikxi c

†
i+nτ

µc†i and τµ = (1,σα)
and the quantum numbers are spin combination µ =
0, ..., 3, the ”pairing distance” n = (1, ...,M −1), and the
pairing momentum k = (−(M−1)/2, ..., (M−1)/2)2π/M
(the one dimensional analog of the d-wave state is homo-
geneous nearest neighbour singlet pairing O†

0,1,2). Note
that the construction is not applicable for the seemingly
simplest onsite pairing states O†

k,0,2; the analogs of Eq.
(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form

of Jα
i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree

entropy fidelity of d-wave BCS
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4×3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.
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tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N� = O†N
k,n,µ|vac�,

where O†
k,n,µ =

�
i exp ikxi c

†
i+nτ

µc†i and τµ = (1,σα)
and the quantum numbers are spin combination µ =
0, ..., 3, the ”pairing distance” n = (1, ...,M −1), and the
pairing momentum k = (−(M−1)/2, ..., (M−1)/2)2π/M
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geneous nearest neighbour singlet pairing O†
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(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form
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i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree

• “near” final BCS state: Bogoliubov-type analysis:  (U=0)

exp(eiθd†)|vac� =
�

q(1+e
iθϕqc

†
q,↑c

†
−q,↓)|vac�. At late times,

we can then expand the state around |BCSθ� with the ansatz

ρ =
�

q ρq, where ρq contains the two momentum modes

±q necessary to describe pairing. Using the projection pre-

scription ρq = tr �=qρ, we then find the equations of motion

for the single pair density matrices ρq in the presence of

nonzero mean fields resulting from a coupling to other mo-

mentum modes, whose values are dictated by the proxim-

ity to the final state. The resulting effective Hamiltonian is

quadratic and given by

Heff = − i

2
κ
�

q,σ

�
ñ(c†q,σcq,σ + |ϕq|2cq,σc†q,σ) + ∆̃qsσc−(q,σ)cq,σ + h.c.

�

= − i

2

�

q,σ

κqγ
†
q,σγq,σ,

with s↑ = −1, s↓ = 1 and dimensionless "gap function"

∆̃q = ∆̃ϕq

, and where the diagonal and off diagonal mean fields eval-

uate to

ñ = |∆̃| = 2

�
dq

(2π)2
|ϕq|2

1 + |ϕq|2
≈ 0.72

on the d-wave state. The effective Hamiltonian is diagonal-

ized in the second line, introducing quasiparticle Lindblad

operators

γq,σ =
1�

1 + ϕ2
q

(c−q,σ + sσϕqc
†
q,−σ).

In this basis, the resulting master equation reads

ρ̇ = −iHeffρ+ iρH†
eff +

�

q,σ

κqγq,σργ
†
q,σ

. The linearized Lindblad operators have analogous proper-

ties to quasiparticle operators familiar from interaction pair-

ing problems: (i) They annihilate the (unique) steady state

γq,σ|BCSθ� = 0
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on the d-wave state. The effective Hamiltonian is diagonal-

ized in the second line, introducing quasiparticle Lindblad

operators

γq,σ =
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1 + ϕ2
q

(c−q,σ + sσϕqc
†
q,−σ).

In this basis, the resulting master equation reads

ρ̇ = −iHeffρ+ iρH†
eff +

�

q,σ

κqγq,σργ
†
q,σ

. The linearized Lindblad operators have analogous proper-

ties to quasiparticle operators familiar from interaction pair-

ing problems: (i) They annihilate the (unique) steady state

γq,σ|BCSθ� = 0

; (ii) they obey the Dirac algebra {γq,σ, γ†
q�,σ�} = δq,q�δσ,σ�

and zero otherwise 1; and (iii) therefore are related to the

original fermions via a canonical transformation. The imag-

inary spectrum of the effective Hamiltonian features a "dis-

sipative pairing gap"

κq = κ ñ (1 + ϕ2
q) ≥ κ ñ.

The dissipative gap implies an exponential approach to steady

state d-wave BCS state for long times. This can be most

easily seen in a quantum trajectory representation of the

master equation, where the time evolution of the system is

described by a stochastic system wavefunction |ψ(t)� un-

dergoing a time evolution with non-hermitian Hamiltonian

|ψ(t)� = e−iHeff t|ψ(0)�/ �. . .�

interrupted with rate

κ �j�|ψ(t)��2

1The simple algebra emerging at late times contrasts with the properties

of Jα
i , which do not exhibit such a property

with

with a “dissipative gap”
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• Cold atom implementation:
- design atom - reservoir couplings

• Other interesting states ...

17

Remarks:

Laughlin (?)

Exotic Spin models (see below)

BEC

BEC

S. Diehl et al., Nature Physics 2008
B. Kraus et al., PRA 2008

H. Weimer et al., Nature Physics 2010
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• Example 2: driven BEC & dynamical quantum phase transition

Q.: Identifying and engineering Lindblad operators,
      new physics … ?

S. Diehl et al., Nature Physics 2008
B. Kraus et al., PRA 2008
S. Diehl et al. PRL 2010

dρ

dt
= −i [H, ρ] + Lρ

drives to a BECinteractions
dynamical quantum phase transition

nonequilibrium phase diagram

physical implementation with atoms in optical lattice
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Rydberg Quantum Simulator for Open System 
Dynamics
• Exotic spin models with atoms in 2D/3D optical lattices

19

• Experimental demonstration of basic 
concepts: trapped ions

2D optical lattice

1D string of ions

M. Müller, I. Lesanovsky, H. Weimer, H. Büchler, PZ, 
PRL 2009

H. Weimer,  M. Müller, I. Lesanovsky, PZ, H. Büchler, 
Nature Physics 2010

(in present form non-scalable)

J. Barreiro, M. Müller, …, PZ, R. Blatt, draft 
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Single Site Imaging (& Addressing)

20

measure
single site/atom

address 
atom

interactions (?)

large spacing optical lattices:

✓ single site / atom addressing 

✓ long distance interactions (?)

✓ small tunneling: Hubbard models

spin models

Rydberg interactions

Monday, October 11, 2010



“Rydberg Quantum Simulator” for Spin Systems

• Large spacing optical lattices:

21

spin or qubit

Rydberg 
interactions

✓coherent n-spin interactions
✓dissipative “cooling” dynamics

✓addressable spins

• Rydberg - Rydberg interaction

✓strong / long distance interactions

• Goal: Exotic Spin Models

A. Kitaev, Fault-tolerant quantum computation by anyons (2003,2006)
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological Quantum Memory (2002)

provides implementation for ...

auxilliary (Rydberg) 
atoms

M. Müller et al., PRL 2009
H. Weimer et al., Nature Physics 2010
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Kitaevʼs Toric Code

22

Stabilizer states: “toric code”

- set of stabilizer operators: local, commuting

- ground state of the Hamiltonian

- topological phase with
  anyonic excitations:

Ap =
�

σx
i

Bs =
�

σz
i

Bs|ψ� = |ψ�

Ap|ψ� = |ψ�

- “magnetic” excitation:

- “charge” excitation:

- abelian statistics

(alternative methods for Kitaev model (two-body interaction)
polar molecules, Micheli et al 2006; optical lattices, Demler et al 2004)

four body interactions

© HP Büchler
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Kitaevʼs Toric Code

23

Stabilizer states: “toric code”

- set of stabilizer operators: local, commuting

- ground state of the Hamiltonian

- topological phase with
  anyonic excitations:

Ap =
�

σx
i

Bs =
�

σz
i

Bs|ψ� = |ψ�

Ap|ψ� = |ψ�

- “magnetic” excitation:

- “charge” excitation:

- abelian statistics

(alternative methods for Kitaev model (two-body interaction)
polar molecules, Micheli et al 2006; optical lattices, Demler et al 2004)

four body interactions

“magnetic excitation”

“magnetic excitation”

© HP Büchler
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A Toy Model 1

2

3

4

Goal: On a single plaquette ...

• Lindblad master equation

d

dt
ρ = −i [H, ρ] + γ

�
cρc

† − 1
2
c
†
cρ− ρ

1
2
c
†
c

�

• Coherent evolution: Hamiltonian

H = hσ
(1)
x σ

(2)
x σ

(3)
x σ

(4)
x

• Dissipative evolution: quantum jump operator

c =
√

γσ
(1)
z

�
1− σ

(1)
x σ

(2)
x σ

(3)
x σ

(4)
x

�

Sx = σ(1)
x σ(2)

x σ(3)
x σ(4)

x

Sx=+1Sx=-1
pumping of stabilizer

analogous to 
optical pumping
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A Toy Model
Goal: On a single plaquette ...

• Lindblad master equation

d

dt
ρ = −i [H, ρ] + γ

�
cρc

† − 1
2
c
†
cρ− ρ

1
2
c
†
c

�

• Coherent evolution: Hamiltonian

H = hσ
(1)
x σ

(2)
x σ

(3)
x σ

(4)
x

• Dissipative evolution: quantum jump operator

c =
√

γσ
(1)
z

�
1− σ

(1)
x σ

(2)
x σ

(3)
x σ

(4)
x

�

Sx = σ(1)
x σ(2)

x σ(3)
x σ(4)

x

How (efficiently) … 
✓n-spin interactions
✓n-spin quantum jump operators

Challenge:
… with Rydberg atoms 
& dipolar interactions

+ optical pumping

1

2

3

4

auxiliary atom
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X

always on
(analog)

stroboscopic
(digital)

Ham
ilto

nia
n

op
en

 sy
ste

m

Remark 1: Quantum Simulation
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Coherent Quantum Dynamics

27

• “analog” simulation
laser

We “build” a quantum system with desired 
dynamics & controllable parameters,
e.g. Hubbard models of atoms in optical lattices

It is difficult to mimic n-body interactions & constraints

optical lattice emulators

V
(n) ∼ V

(2) 1
E −H

V
(2)

. . . V
(2) 1

E −H
V

(2) → ”0”

n-body 2-body effective n-body interactions in 
perturbation theory

extended 
Hubbard models

H = −J
�

�i,j� b
†
jbi + 1

2U
�

i b
†2
i b

2
i

example: bose (or fermi) Hubbard model
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Coherent Quantum Dynamics

28

• “stroboscopic” or “digital” simulation

H =
�

α

hα

U(t) ≡ e−iHt = e−iH∆tn . . . e−iH∆t1 (t =
�

i

∆ti)

e−iH∆t =
�

α

e−ihα∆t + !""#"$

time evolution
of many body spin 

Hamiltonian

Trotter formula

... e−iHeff t

single qubit gate 2-qubit gate n-qubit gate ~ n-body interaction 

qubits
or

spins

time

stroboscopic time evolution as 
sequence of quantum gates

desired many body Hamiltonian
“on the average”

Lloyd, ...
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Open Quantum Systems

• Q.: dissipative preparation of entangled states

29

system

environ-
ment

U
ρ

ρenv

U U
= |ψ� �ψ|
!?

 

pumping into 
pure entangled 
state of interest

engineer coupling to 
a quantum reservoir

• optical pumping (Kastler) or laser cooling

ρ(t) t→∞−−−→ |g+� �g+|

driven dissipative dynamics 
“purifies” the state

ρ→ E(ρ) =
�

k

EkρE†
k

n-body quantum jump operators ☹
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Remark 2: Rydberg Gates

• efficient n-spin entangling gates

30
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• atomic configuration

laser laser

qubitqubit

Atom 1 Atom 2

Large dipole-dipole 
interaction  shifts 
level off resonance:

No double excitation - 
no force!

• dipole blockade

• theory: NIST, Orsay, Wisconsin, Aarhus, ...

• exp: Wisconsin (2009), Orsay (2009), ...

Two-Qubit Gate & Dipole blockade

31

Monday, October 11, 2010



… and an “n-qubit CNOT” Rydberg Gate

32

Rydberg controller

qubits

G = |0�c�0| ⊗ 1 + |1�c�1| ⊗ σ(1)
x σ(2)

x σ(3)
x σ(4)

x . . .

n-qubits
Rydberg controller

• gate: ingredients
- atoms in a large spacing optical 

lattice: addressability
- Rydberg dipole-dipole

 

✓ High fidelity even for moderately 
large # qubits

✓ Fast 3 laser pulses
✓ Long-range interactions
✓ Robust with respect to 

- inhomogeneities in the 
interparticle distances

- variations in the interaction 
strengths

- no mechanical effects
✓ experimentally realistic 

parameters

features:

M. Müller et al., PRL 2009

Monday, October 11, 2010



          

Digital simulation: a single time step

0

...

tZ-controller

X-controller

general approach:

a) map the information on the 
    four spins onto the auxiliary qubit 

+1 -1

|0�c

⊗|0�c

⊗ |1�c⊗

mapping

| +−+ +�| + +−−�

-1+1

b) manipulation of the auxiliary atom

c) undo the mapping 

Sx = σ(1)
x σ(2)

x σ(3)
x σ(4)

x
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time
|0�

|Ψ�

U (c)
π/2 (U (c)

π/2)
−1

our multi-qubit CNOT-gate 

G = |0�c�0| ⊗ 1 + |1�c�1| ⊗ σ(1)
x σ(2)

x σ(3)
x σ(4)

x

Implementation of a single time step

X-controller

|+�

|−�

|+�

|+�

1

2

3

4

Sx = σ(1)
x σ(2)

x σ(3)
x σ(4)

xexample: four-body interactions
in Kitaev’s toric code

a) mapping

|0�

|1�

control atom spin atoms gate sequence

|0�

|1�

|0� ⊗ | + + +−�

|0� ⊗ | + +−−�

U (c)
π/2

(|0�+ |1�)⊗ | + +−−�

(|0�+ |1�)⊗ | + + +−�

G

(|0� − |1�)⊗ | + + +−�

Sx ±1eigenvalue information       mapped onto the control atom

(U (c)
π/2)

−1

|0� ⊗ | + +−−�

−|1� ⊗ | + + +−�
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time
|0�

|Ψ�

|+�

|−�

|+�

|+�

1

2

3

4

c) undo the mapping step

|0�

|Ψ��

τ

stroboscopic simulation

energy scale set by rotation 
angle     and gate duration   ,
can be on the order 100 kHz

α τ

composed
 evolution

with

H = −�α

τ
σ

(1)
x σ

(2)
x σ

(3)
x σ

(4)
x

|Ψ�� = U |Ψ�

U ≡ exp(−iHτ/�)

Implementation of a single time step

a) mapping

small local rotation of the 
control atom

R = exp(iασ(c)
z )

α� 1
b) manipulation:

|0�| + +−−� → eiα|0�| + +−−�

|1�| + + +−� → e−iα|1�| + + +−�

auxiliary atom factorizes out

all +1 eigenstates have picked 
up a phase 
all -1 eigenstates have picked 
up a phase −α

+α
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time
|0�

|Ψ�

|+�

|−�

|+�

|+�

1

2

3

4

c) undo the mapping step

|0�

|Ψ��

τ

� |0�
d) dissipative element: optical 

       pumping of the control atom

Cooling: one dissipative time step
goal: prepare the spin system in +1 eigenstates

|0�| + +−−� → |0�| + +−−�
|1�| + + +−� → |1�|−+ +−�

 

 

Sx
a) mapping | + +−−� | + + +−�

|0�| + +−−� |1�| + + +−�

-1+1

Hilbert space

|0� |0�

b) conditional spin flip of one qubit

C = |0�c�0| ⊗ 1 + |1�c�1| ⊗ exp(iφσ(1)
z )

... with a small probability φ2 � 1
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Experiment with Trapped Ions

• 2+1 ions: Bell state cooling

• 4+1 ions “one plaquette”: stabilizer cooling and 4-body interactions

• QND measurement of 4-qubit stabilizers

37

Julio Barreiro (exp: R. Blatt), M. Müller (theory)

Julio Barreiro
(exp)

Markus Müller
(theory)

R. Blatt’s
ion trap lab

2
4

1

3

5 6

7

2D

1D
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Non-Equilibrium Dynamics on Optical Lattices:
Heating & Decoherence due Spontaneous Emission

• Q.: interplay decoherence & many body

40

H. Pichler, A. Daley, and PZ, arXiv:1009.0194

Microscopic Understanding

Dynamics

ρ̇ = −i
�
HBH/FB + . . . , ρ

�
+ Lρ

strongly correlated
Hubbard dynamics

decoherence,
e.g. spontaneous emission
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Heating in optical lattices: single particle 

• Spontaneous emission

• Red detuning gives rise to more spontaneous emission events in deep lattices

• Processes returning atoms to the lowest band are strongly suppressed for blue 
detuning

41

red detuned lattice blue detuned lattice

Lamb-Dicke
parameter:

lattice spacing
λ/2

localization a0

η = 2πa0/λ << 1
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N-boson master equation

42

Heff = H0 +H
rad
eff +H

coll
eff .

ρ̇ = −i

�
Heffρ− ρH†

eff
�
+ Jradρ

• master equation for atoms in ground state:

• effective non-Hermitian Hamiltonian:

• single particle motion in optical lattice

5

detuning, all of these states can be adiabatically elimi-

nated to produce the same effective model with prefactors

that arise from correctly summing the contributions from

all excited levels.

Similar remarks also apply to the N -Atom Master

equation that we present below.

B. N-Atom Case

We now present the full model for N atoms in the lat-

tice. Below we first state the full master equation assum-

ing two-level atoms, and discuss the origins of each term,

including terms arising from interactions and collisional

loss in the system.

1. Master equation for N atoms

For N bosonic atoms the evolution of the reduced

system density operator ρ is given by a master equa-

tion which we write in using second quantization. Elim-

inating the atoms in the excited state and defining

field operators ψ̂(x) with bosonic commutation relations�
ψ̂(x), ψ̂†

(y)
�
= δ(x− y) for atoms in the ground state,

we derive again a master equation of the form

ρ̇ = −i

�
Heffρ− ρH†

eff

�
+ J ρ, (14)

with non-hermitian effective Hamiltonian

Heff = H0 +H
rad
eff +H

coll
eff . (15)

The first contribution to the effective Hamiltonian, H0,

is the term describing motion of single atoms in the op-

tical lattice,

H0 =

�
d
3
xψ̂†

(x)

�
− �2
2m

∇2
+ Vopt(x)

�
ψ̂(x), (16)

which is the same form derived in Sec. ??.
The radiative part of the master equation describing

the couplings of the atoms to the vacuum modes of the

electromagnetic field are contained in the effective Hamil-

tonian

H
rad
eff =

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
G(keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x) (17)

− i
1

2

�
d
3
x
Γ|Ω(x)|2

4∆2
ψ̂†

(x)ψ̂(x)− i
1

2

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x), (18)

and recycling term

J ρ =

��
d
3
xd

3
y
ΓΩ(x)Ω(y)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂(x)ρψ̂†
(y)ψ̂(y). (19)

with functions F and G defined as

F (ξ) =

�
d
2uN(u)e−iu·ξ

=
3

2

�
sin ξ

ξ

�
1− (d̂ · ξ̂)2

�
+

�
1− 3(d̂ · ξ̂)2

��
cos ξ

ξ2
− sin ξ

ξ3

��
, , (20)

G(ξ) = − 1

ξ3
P
� ∞

−∞

dζ

2π

ζ3

ζ − ξ
F (ζξ/ξ)

=
3

4

�
−
�
1− (d̂ · ξ̂)2

�
cos ξ

ξ
+

�
1− 3(d̂ · ξ̂)2

��
sin ξ

ξ2
+

cos ξ

ξ3

��
, (21)

where P denotes the principal value integral.

Finally, we have an effective Hamiltonian accounting

for short range collision physics in the presence of laser

fields, as well as associated losses

H
coll
eff =

�
d
3
x

�
g(x)− i

1

2
γ2(x)

�
ψ̂†

(x)ψ̂†
(x)ψ̂(x)ψ̂(x),

(22)

where the functions g and γ2 will be discussed below.

We will now give a more detailed discussion of the ra-

diative and collisional contributions to the master equa-

tion, as well as commenting on the validity of these equa-

tions in each case.

Radiative terms – As mentioned above, radiative pro-

cesses are contained in the effective Hamiltonian H
rad
eff

Vopt =
|Ω(x)|2

4∆
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N-boson master equation

43

• radiative processes

5

detuning, all of these states can be adiabatically elimi-

nated to produce the same effective model with prefactors

that arise from correctly summing the contributions from

all excited levels.

Similar remarks also apply to the N -Atom Master

equation that we present below.

B. N-Atom Case

We now present the full model for N atoms in the lat-

tice. Below we first state the full master equation assum-

ing two-level atoms, and discuss the origins of each term,

including terms arising from interactions and collisional

loss in the system.

1. Master equation for N atoms

For N bosonic atoms the evolution of the reduced

system density operator ρ is given by a master equa-

tion which we write in using second quantization. Elim-

inating the atoms in the excited state and defining

field operators ψ̂(x) with bosonic commutation relations�
ψ̂(x), ψ̂†

(y)
�
= δ(x− y) for atoms in the ground state,

we derive again a master equation of the form

ρ̇ = −i

�
Heffρ− ρH†

eff

�
+ J ρ, (14)

with non-hermitian effective Hamiltonian

Heff = H0 +H
rad
eff +H

coll
eff . (15)

The first contribution to the effective Hamiltonian, H0,

is the term describing motion of single atoms in the op-

tical lattice,

H0 =

�
d
3
xψ̂†

(x)

�
− �2
2m

∇2
+ Vopt(x)

�
ψ̂(x), (16)

which is the same form derived in Sec. ??.
The radiative part of the master equation describing

the couplings of the atoms to the vacuum modes of the

electromagnetic field are contained in the effective Hamil-

tonian

H
rad
eff =

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
G(keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x) (17)

− i
1

2

�
d
3
x
Γ|Ω(x)|2

4∆2
ψ̂†

(x)ψ̂(x)− i
1

2

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x), (18)

and recycling term

J ρ =

��
d
3
xd

3
y
ΓΩ(x)Ω(y)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂(x)ρψ̂†
(y)ψ̂(y). (19)

with functions F and G defined as

F (ξ) =

�
d
2uN(u)e−iu·ξ

=
3

2

�
sin ξ

ξ

�
1− (d̂ · ξ̂)2

�
+

�
1− 3(d̂ · ξ̂)2

��
cos ξ

ξ2
− sin ξ

ξ3

��
, , (20)

G(ξ) = − 1

ξ3
P
� ∞

−∞

dζ

2π

ζ3

ζ − ξ
F (ζξ/ξ)

=
3

4

�
−
�
1− (d̂ · ξ̂)2

�
cos ξ

ξ
+

�
1− 3(d̂ · ξ̂)2

��
sin ξ

ξ2
+

cos ξ

ξ3

��
, (21)

where P denotes the principal value integral.

Finally, we have an effective Hamiltonian accounting

for short range collision physics in the presence of laser

fields, as well as associated losses

H
coll
eff =

�
d
3
x

�
g(x)− i

1

2
γ2(x)

�
ψ̂†

(x)ψ̂†
(x)ψ̂(x)ψ̂(x),

(22)

where the functions g and γ2 will be discussed below.

We will now give a more detailed discussion of the ra-

diative and collisional contributions to the master equa-

tion, as well as commenting on the validity of these equa-

tions in each case.

Radiative terms – As mentioned above, radiative pro-

cesses are contained in the effective Hamiltonian H
rad
eff

dipole-dipole interaction

single particle optical pumping super- / subradiant effects

5

detuning, all of these states can be adiabatically elimi-

nated to produce the same effective model with prefactors

that arise from correctly summing the contributions from

all excited levels.

Similar remarks also apply to the N -Atom Master

equation that we present below.

B. N-Atom Case

We now present the full model for N atoms in the lat-

tice. Below we first state the full master equation assum-

ing two-level atoms, and discuss the origins of each term,

including terms arising from interactions and collisional

loss in the system.

1. Master equation for N atoms

For N bosonic atoms the evolution of the reduced

system density operator ρ is given by a master equa-

tion which we write in using second quantization. Elim-

inating the atoms in the excited state and defining

field operators ψ̂(x) with bosonic commutation relations�
ψ̂(x), ψ̂†

(y)
�
= δ(x− y) for atoms in the ground state,

we derive again a master equation of the form

ρ̇ = −i

�
Heffρ− ρH†

eff

�
+ J ρ, (14)

with non-hermitian effective Hamiltonian

Heff = H0 +H
rad
eff +H

coll
eff . (15)

The first contribution to the effective Hamiltonian, H0,

is the term describing motion of single atoms in the op-

tical lattice,

H0 =

�
d
3
xψ̂†

(x)

�
− �2
2m

∇2
+ Vopt(x)

�
ψ̂(x), (16)

which is the same form derived in Sec. ??.
The radiative part of the master equation describing

the couplings of the atoms to the vacuum modes of the

electromagnetic field are contained in the effective Hamil-

tonian

H
rad
eff =

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
G(keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x) (17)

− i
1

2

�
d
3
x
Γ|Ω(x)|2

4∆2
ψ̂†

(x)ψ̂(x)− i
1

2

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x), (18)

and recycling term

J ρ =

��
d
3
xd

3
y
ΓΩ(x)Ω(y)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂(x)ρψ̂†
(y)ψ̂(y). (19)

with functions F and G defined as

F (ξ) =

�
d
2uN(u)e−iu·ξ

=
3

2

�
sin ξ

ξ

�
1− (d̂ · ξ̂)2

�
+

�
1− 3(d̂ · ξ̂)2

��
cos ξ

ξ2
− sin ξ

ξ3

��
, , (20)

G(ξ) = − 1

ξ3
P
� ∞

−∞

dζ

2π

ζ3

ζ − ξ
F (ζξ/ξ)

=
3

4

�
−
�
1− (d̂ · ξ̂)2

�
cos ξ

ξ
+

�
1− 3(d̂ · ξ̂)2

��
sin ξ

ξ2
+

cos ξ

ξ3

��
, (21)

where P denotes the principal value integral.

Finally, we have an effective Hamiltonian accounting

for short range collision physics in the presence of laser

fields, as well as associated losses

H
coll
eff =

�
d
3
x

�
g(x)− i

1

2
γ2(x)

�
ψ̂†

(x)ψ̂†
(x)ψ̂(x)ψ̂(x),

(22)

where the functions g and γ2 will be discussed below.

We will now give a more detailed discussion of the ra-

diative and collisional contributions to the master equa-

tion, as well as commenting on the validity of these equa-

tions in each case.

Radiative terms – As mentioned above, radiative pro-

cesses are contained in the effective Hamiltonian H
rad
eff

recycling term: return of electron to ground state after emission

�5 �4 �3 �2 �1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Ξ

F�ΠΞ�

density density

spontaneous emission 
localizes the particle to 

~ wavelength

ξ = keg|x− y|
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5

detuning, all of these states can be adiabatically elimi-

nated to produce the same effective model with prefactors

that arise from correctly summing the contributions from

all excited levels.

Similar remarks also apply to the N -Atom Master

equation that we present below.

B. N-Atom Case

We now present the full model for N atoms in the lat-

tice. Below we first state the full master equation assum-

ing two-level atoms, and discuss the origins of each term,

including terms arising from interactions and collisional

loss in the system.

1. Master equation for N atoms

For N bosonic atoms the evolution of the reduced

system density operator ρ is given by a master equa-

tion which we write in using second quantization. Elim-

inating the atoms in the excited state and defining

field operators ψ̂(x) with bosonic commutation relations�
ψ̂(x), ψ̂†

(y)
�
= δ(x− y) for atoms in the ground state,

we derive again a master equation of the form

ρ̇ = −i

�
Heffρ− ρH†

eff

�
+ J ρ, (14)

with non-hermitian effective Hamiltonian

Heff = H0 +H
rad
eff +H

coll
eff . (15)

The first contribution to the effective Hamiltonian, H0,

is the term describing motion of single atoms in the op-

tical lattice,

H0 =

�
d
3
xψ̂†

(x)

�
− �2
2m

∇2
+ Vopt(x)

�
ψ̂(x), (16)

which is the same form derived in Sec. ??.
The radiative part of the master equation describing

the couplings of the atoms to the vacuum modes of the

electromagnetic field are contained in the effective Hamil-

tonian

H
rad
eff =

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
G(keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x) (17)

− i
1

2

�
d
3
x
Γ|Ω(x)|2

4∆2
ψ̂†

(x)ψ̂(x)− i
1

2

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x), (18)

and recycling term

J ρ =

��
d
3
xd

3
y
ΓΩ(x)Ω(y)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂(x)ρψ̂†
(y)ψ̂(y). (19)

with functions F and G defined as

F (ξ) =

�
d
2uN(u)e−iu·ξ

=
3

2

�
sin ξ

ξ

�
1− (d̂ · ξ̂)2

�
+

�
1− 3(d̂ · ξ̂)2

��
cos ξ

ξ2
− sin ξ

ξ3

��
, , (20)

G(ξ) = − 1

ξ3
P
� ∞

−∞

dζ

2π

ζ3

ζ − ξ
F (ζξ/ξ)

=
3

4

�
−
�
1− (d̂ · ξ̂)2

�
cos ξ

ξ
+

�
1− 3(d̂ · ξ̂)2

��
sin ξ

ξ2
+

cos ξ

ξ3

��
, (21)

where P denotes the principal value integral.

Finally, we have an effective Hamiltonian accounting

for short range collision physics in the presence of laser

fields, as well as associated losses

H
coll
eff =

�
d
3
x

�
g(x)− i

1

2
γ2(x)

�
ψ̂†

(x)ψ̂†
(x)ψ̂(x)ψ̂(x),

(22)

where the functions g and γ2 will be discussed below.

We will now give a more detailed discussion of the ra-

diative and collisional contributions to the master equa-

tion, as well as commenting on the validity of these equa-

tions in each case.

Radiative terms – As mentioned above, radiative pro-

cesses are contained in the effective Hamiltonian H
rad
eff

recycling term: return of electron to ground state after emission
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• Imaging Hubbard models:
Harvard, Munich, Chicago, Penn State, ...

of a phase hologram. This is in contrast to conventional optical lattice
experiments in which lattice potentials are created by superimposing
separate laser beams to create optical standing waves. The advantage
of thenewmethod is that the geometry of the lattice is directly givenby
the pattern on the mask. The imaged light pattern, and hence the
potential landscape, can be arbitrary within the limits set by the avail-
able imaging aperture and by polarization effects that can arise due to
the large aperture imaging beyond the paraxial limit. Here, we create
blue detuned square lattice potentials with a periodicity a5 640 nm
and an overall Gaussian envelope. Amajor additional advantage is the
fact that the lattice geometry is not dependent on the wavelength20,
apart from diffraction limits and chromatic aberrations in the lens for
large wavelength changes. This allows us to use spectrally wide ‘white’
light with a short coherence length to reduce unwanted disorder from
stray light interference.With a light source centred around 758 nm,we
generate a conservative lattice potential with a lattice depth of up to 35
Erec, where Erec5 h2/8ma2 is the recoil energy of the effective lattice
wavelength, with m the mass of 87Rb.

The projection method also enables us to dynamically change the
wavelength of the lattice light without changing the lattice geometry.
This is important, as we strongly increase the lattice depth for site-
resolved imaging in order to suppress diffusion of the atoms between
sites due to recoil heating by the imaging light13. For this, we switch
the light in the 2D lattice and the vertical standing wave to near-
resonant narrow band light, increasing the lattice depth to 5,500
Erec (to 380 mK). The main use of the microscope set-up is the col-
lection of fluorescence light and high-resolution imaging of the
atoms. With the atoms pinned to the deep lattice, we illuminate
the sample with red detuned near-resonant light in an optical
molasses configuration, which simultaneously provides sub-
Doppler cooling24,25. Figure 2 shows a typical image obtained by
loading the lattice with a very dilute cloud, showing the response
of individual atoms. The spot function of a single atom can be
directly obtained from such images. We measure a typical single
atom emission FWHM size as 570 nm and 630 nm along the x and
y direction, respectively, which is close to the theoretical minimum
value of,520 nm (Fig. 3). This minimum is given by the diffraction
limit from the objective combined with the finite size of the camera

pixels and the expected extent of the atom’s on-site probability dis-
tribution within the lattice site during the imaging process. As the
same high-resolution optics are used to generate both the lattice and
the image of the atoms on the CCD camera, the imaging system is
very stable with respect to the lattice, which is important for single-
site addressing26. The observed drifts in the 2D plane are very low, less
than 10% of the lattice spacing in one hour with shot to shot fluctua-
tions of less than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high
due to the strong confinement in the lattice. When resonantly illu-
minated, such pairs undergo light assisted collisions and leave the
trap within a time of the order of 100 ms, long before they emit
sufficient photons to be detected27. Therefore the remaining number

a

b

c

e

f
g

d CCD

y

z

Figure 1 | Diagram of the quantum gas microscope. The two-dimensional
atom sample (a) is located a few micrometres below the lower surface of a
hemispherical lens inside the vacuum chamber. This lens serves to increase
the numerical aperture (NA) of the objective lens outside the vacuum (b) by
the index of refraction, from NA5 0.55 to NA5 0.8. The atoms are
illuminated from the side by the molasses beams (c) and the scattered
fluorescence light is collected by the objective lens and projected onto a CCD
camera (d). A 2D optical lattice is generated by projecting a periodic mask
(e) onto the atoms through the same objective lens via a beam splitter
(f). The mask is a periodic phase hologram, and a beam stop (g) blocks the
residual zeroth order, leaving only the first orders to form a sinusoidal
potential.
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Figure 2 | Imaging single atoms. a, Field of viewwith sparse site occupation.
b, Response of a single atom, derived from sparse images: shown are
horizontal (filled circles) and vertical (open circles) profiles through the
centre of the image generated by a single atom. The black line shows the
expected Airy function for a perfect imaging system with a numerical
aperture of 0.8. The blue dashed line denotes the profile expected from a
single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location.
The data are from the responses of 20 atoms in different locations within the
field of view which have been precisely superimposed by subpixel shifting
before averaging.

5 μm

640 nm

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loadedwith a high density Bose–Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.
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5

detuning, all of these states can be adiabatically elimi-

nated to produce the same effective model with prefactors

that arise from correctly summing the contributions from

all excited levels.

Similar remarks also apply to the N -Atom Master

equation that we present below.

B. N-Atom Case

We now present the full model for N atoms in the lat-

tice. Below we first state the full master equation assum-

ing two-level atoms, and discuss the origins of each term,

including terms arising from interactions and collisional

loss in the system.

1. Master equation for N atoms

For N bosonic atoms the evolution of the reduced

system density operator ρ is given by a master equa-

tion which we write in using second quantization. Elim-

inating the atoms in the excited state and defining

field operators ψ̂(x) with bosonic commutation relations�
ψ̂(x), ψ̂†

(y)
�
= δ(x− y) for atoms in the ground state,

we derive again a master equation of the form

ρ̇ = −i

�
Heffρ− ρH†

eff

�
+ J ρ, (14)

with non-hermitian effective Hamiltonian

Heff = H0 +H
rad
eff +H

coll
eff . (15)

The first contribution to the effective Hamiltonian, H0,

is the term describing motion of single atoms in the op-

tical lattice,

H0 =

�
d
3
xψ̂†

(x)

�
− �2
2m

∇2
+ Vopt(x)

�
ψ̂(x), (16)

which is the same form derived in Sec. ??.
The radiative part of the master equation describing

the couplings of the atoms to the vacuum modes of the

electromagnetic field are contained in the effective Hamil-

tonian

H
rad
eff =

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
G(keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x) (17)

− i
1

2

�
d
3
x
Γ|Ω(x)|2

4∆2
ψ̂†

(x)ψ̂(x)− i
1

2

��
d
3
xd

3
y
ΓΩ(y)Ω∗

(x)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂†
(y)ψ̂(y)ψ̂(x), (18)

and recycling term

J ρ =

��
d
3
xd

3
y
ΓΩ(x)Ω(y)

4∆2
F (keg(x− y))ψ̂†

(x)ψ̂(x)ρψ̂†
(y)ψ̂(y). (19)

with functions F and G defined as

F (ξ) =

�
d
2uN(u)e−iu·ξ

=
3

2

�
sin ξ

ξ

�
1− (d̂ · ξ̂)2

�
+

�
1− 3(d̂ · ξ̂)2

��
cos ξ

ξ2
− sin ξ

ξ3

��
, , (20)

G(ξ) = − 1

ξ3
P
� ∞

−∞

dζ

2π

ζ3

ζ − ξ
F (ζξ/ξ)

=
3

4

�
−
�
1− (d̂ · ξ̂)2

�
cos ξ

ξ
+

�
1− 3(d̂ · ξ̂)2

��
sin ξ

ξ2
+

cos ξ

ξ3

��
, (21)

where P denotes the principal value integral.

Finally, we have an effective Hamiltonian accounting

for short range collision physics in the presence of laser

fields, as well as associated losses

H
coll
eff =

�
d
3
x

�
g(x)− i

1

2
γ2(x)

�
ψ̂†

(x)ψ̂†
(x)ψ̂(x)ψ̂(x),

(22)

where the functions g and γ2 will be discussed below.

We will now give a more detailed discussion of the ra-

diative and collisional contributions to the master equa-

tion, as well as commenting on the validity of these equa-

tions in each case.

Radiative terms – As mentioned above, radiative pro-

cesses are contained in the effective Hamiltonian H
rad
eff

N-boson master equation

contact potential:
real & light induced imaginary scattering length
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Hubbard Master Equation

• projecting of Wannier functions …

• Solution
- time dependent perturbation theory in spontaneous emission
- tDMRG + quantum trajectories

- mean field Gutzwiller: 
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Master equation
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Fig. 4 for red and blue detuned light, normalised to γ0.
We see a clear difference between the results for red and

blue detuning. The reason for this is that the breakdown

of long-range correlations is rooted in the localisation ef-

fect of spontaneous emission events, as was discussed in

Sec. II C. This localisation depends not on the rate of

energy input into the system, but rather on the total

scattering rate, which is larger in the red-detuned case.

Hence, the breakdown occurs substantially faster for the

red-detuned lattice than for blue detuning.

At the same time, the localisation effect is much more

harmful for a superfluid state in the weakly interacting

limit, than for a Mott Insulator state, where the particles

are already exponentially localised at different sites. In

the extreme limit U/J → ∞, the only significant change

in the state is the (rare) transfer of some atoms to higher

bands.

Note that the single particle density matrix is also

directly connected to the momentum distribution n(p),
meaning that the measurements that are made in exper-

iments (including the comparison made with quantum

monte-carlo calculations in Ref. [18]) are directly related

to the changes in these correlation functions. Specifically,

n(p) =
1

(2π)3

��
d
3
x1d

3
x2S(x1,x2)e

−ip·(x1−x2), (34)

so that the presence of (quasi-) off-diagonal long range

order in the superfluid regime gives rise to peaks at re-

ciprocal lattice vectors. The breakdown of long-range

order due to spontaneous emission events is then directly

related to a decrease in the visibility of these peaks, as

we show in Fig. 5). Again, in the extreme Mott Insu-

lator limit, the state is very insenstive to spontaneous

emissions, with the initial momentum distribution being

given by the Fourier transform of the lowest band wan-

nier function, and changin only due to processes where an

atom is scattered into higher bands. Since the timescales

for these processes are similar for red and blue detuning,

both lattices have similar effect on the Mott insulator.

Using perturbation theory calculations it is difficult to

quantify the effects of interactions between particles on

the lattice after the spontaneous emission has occurred,

in particular effects due to partial thermalisation of the

energy added to the system. In order to address this, it

is necessary to find a method to propagate the master

equation directly in time. This is discussed in the next

section.

E. Propagation of the master equation

In order to further quantify the heating process, es-

pecially the effects of interactions in the system after

spontaneous emission events have occurred, we now in-

vestigate means to directly integrate the master equation

(14). In 1D systems, this is made possible by computing

t-DMRG methods with quantum trajectory techniques.
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p [1/a]

n(
p)
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FIG. 5: Momentum distribution (in arbitrary units) of the
ground state of noninteracting particles in a 1D lattice of
depth V = 10ER (black), and after a time γ0t = 0.5 if the lat-
tice is generated by a red laser (red, dashed). The inset shows
the central peak initially (black, solid) and after γ0t = 0.5 in
a red (red, dashed) and in a blue lattice (blue, dashed-doted).
(36 particles on 36 sites)

In the 2D/3D case, it is not possible to apply these meth-

ods directly, however qualitative effects can be captured

by using a Gutzwiller mean-field theory treatment similar

to [17].

1. Quantum Trajectories & TEBD

For 1D systems we can compute the evolution of the

system exactly by combining time-dependent density

matrix renormalisation group (t-DMRG) methods with

quantum trajectory techniques. In order to simplify the

numerical computation, we focus on processes returning

atoms to the lowest Bloch band, which are dominant for

red detuning, as discussed above. In addition, we ne-

glect the small off-diagonal terms in the master equation

in a position basis, assuming that particles are localised

on-site, so that (14) reduces to

ρ̇ = −i[HBH , ρ] +
�

i

γ(n̂iρn̂i − 1/2n̂in̂iρ− 1/2ρn̂in̂i),

(35)

where HBH is the Bose-Hubbard Hamiltonian for the

lowest band, and γ is the effective scattering rate.

We then apply the combination of quantum trajecto-

ries and t-DMRG to compute time-dependent expecta-

tion values from the master equation, as discussed in

Ref. [22]. In this combination, t-DMRG [19–21] pro-

vides a convenient means to propagate states that are not

too far from equilibrium in a 1D system, whereas quan-

tum trajectories [38, 39] is a method to compute time-

dependent correlation functions from the master equa-

tion based on a stochastic propagation of states. Briefly,

the idea is that each stochastic trajectory begins from

an initial pure state (sampled from the initial density

Hubbard decoherence
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red detuned lattice blue detuned lattice

4

in a Lamb Dicke limit (η � 1), expanding the Rabi fre-

quency and the plane wave in a power series in kLx. The

leading order scattering processes in this limit are de-

picted in Fig. 1. We then obtain that the scattering rate

for particles initially trapped in the lowest band is given

by

Γscatt = γ(0,0) →
�

Γ|Ω0|2
4∆2 , ∆ < 0;

Γ|Ω0|2
4∆2 η2, ∆ > 0.

(12)

As is expected from the fact that atoms in the blue-

detuned case are at the minimum of the light intensity,

the scattering rate is reduced substantially in this case,

by a factor of η2. This corresponds to a substantial de-

crease in the probability of atoms being scattered back to

the lowest Bloch band in this case, where in the Harmonic

oscillator approximation the rate of scattering returning

atoms to the lowest band is given by

Γl.b.
scatt →

�
Γ|Ω0|2
4∆2 , ∆ < 0;

Γ|Ω0|2
4∆2 η4, ∆ > 0.

Whereas scattering into the lowest band is the dominant

term (order η0) in the red-detuned lattice, the leading

order term for the blue-detuned lattice is scattering into

the first excited band, which is of order η2. This cou-

pling to the first excited band occurs at the identical

rate in the red-detuned lattice in the Harmonic oscillator

approximation.

While the red-detuned and blue-detuned cases exhibit

considerably different scattering rates, the rate at which

the energy of the atom ES = �HS� increases is identical
for red and blue detuning, and completely independent

of the initial motional state of the atom (see Appendix

A),

Ė =
Γ|Ω0|2

4∆2
ER. (13)

In the harmonic oscillator approximation, the indepen-

dence of this rate on the sign of the detuning can be seen

clearly, because an increase in energy arises solely from

coupling to higher bands, and whilst the rate of scat-

tering events returning particles to the lowest band are

very different for blue-detuned and red-detuned light, the

rate with which particles are scattered to higher bands is

identical in the two cases. When the same computation

is performed with Wannier functions, the lowest Bloch

band has a finite energy width, and thus a small energy

increase is obtained from atoms scattered into the low-

est band. The heating rate in the red- and blue- detuned

cases remains identical, however, with the scattering rate

into higher bands in the red-detuned case being slightly

reduced to compensate the energy increase from scatter-

ing into the lowest band.

We note at this point that the rate of energy increase

in the system does not completely characterise the heat-

ing process, and we will show below that for many-body

systems, heating in blue- and red- detuned lattices can

FIG. 1: Schematic picture of the leading-order heating pro-
cesses via scattering of laser photons in a red-detuned (left)
and a blue-detuned (right) lattice, in the Lamb-Dicke limit
(see text). In a red-detuned lattice the fastest process returns
the scattered atom to the lowest band, whilst this process is
strongly suppressed in the blue detuned lattice. In both cases
there are higher order processes in the Lamb-Dicke parameter
η of the lattice, in which the atoms are scattered into higher
Bloch bands. In the limit of a deep lattice, these processes
occur at identical rates in the red-detuned and blue-detuned
cases.

function very differently, despite the fact that the rate of
energy increase remains independent of the sign of the

detuning. A key physical characteristic of spontaneous

emission processes when characterising how the many-

body state changes is that they tend to localise particles

undergoing the scattering event on a lengthscale of the

wavelength of the emitted photon. This will be described

in more detail in Sec. II C.

5. Remarks on the master equation

We conclude with a few remarks regarding the validity

of the above model. The assumption of a two-level sys-

tem here is clearly an oversimplification in some respects.

However, it is very clear how to generalize these results

to more realistic atomic models and experimental setups.

First, in order to generate an isotropic 3D cubic opti-

cal lattice, it is typical to use three laser beams that are

independent, either because they are slightly detuned or

because they have orthogonal polarizations. The opti-

cal potential is a sum of optical potentials for all three

beams, and all terms in the master equation must be

summed over contributions from the different beams. In

the calculations below we explicitly choose different lat-
tice depths in different directions, and perform this sum-

mation, in order to produce results that are as close as

possible to current experiments. The sum of the effec-
tive scattering rate |Ω0|2Γ/(4∆2

) over the beams will be

denoted γ0.
Second, for typical parameters, the lattice lasers are

so far detuned that the rotating wave approximation is

not strictly valid. However, in the limit where the excited

state can be eliminated, this does not change the effective
description of the physics except for small quantitative

modifications in the prefactor of the scattering rate and

the optical potential.

Finally, in multi-level atoms, the far-detuned lasers will

couple to many excited states. Again, in the limit of large

• total light scattering rate • energy heating rate / atom
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Destruction of Coherence, Collisions etc.

• spontaneous emission = localization

• collisions

J
U

collisions do not necessarily thermalize on experimental time 
scales; this is particularly true for excited bands
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Destruction of Coherence, Collisions etc.

• decay of off-diagonal single particle correlation functions

• decay of initial correlations
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Summary

• Driven Dissipative State Preparation
- Example 1: d-wave pairing by dissipation
- [Example 2: driven BEC & quantum phase transition]

• Rydberg Quantum Simulator for Open System Dynamics
- Example: Kitaev toric code & stabilizer pumping
- [an ion trap experiment: “single plaquette”]

• Decoherence / heating: spontaneous emission in opt. lattices
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