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Introduction and Motivation

Background

Joel E. Cohen
Mathematics is biology’s next microscope, only better

Quantative/computational work in biology may be data driven or may
arise through modelling

Model
Quantative, simplified description of a natural system

Useful for

testing/comparing hypotheses
making predictions

This talk will focus on networks: extracting useful information and
modelling
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Introduction and Motivation

Typical Tasks

Data Driven:

find well-connected clusters
find specific connectivity substructures
find ‘important’ nodes or links
compare the properties of one network with another

Modelling Arguments:

summarize a network in terms of a few parameters
explain how the connectivity has arisen
discover missing or spurious links
make predictions concerning future growth of the network
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Introduction and Motivation

Network Science: connections are important

Complex networks are the structural skeletons of complex
systems
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Algebraic Graph Theory

Graph Spectra

Spectral methods:
matrix representation of the network
study the spectra of the resulting matrix, i.e., eigenvalues and
eigenvectors

Importantly:
this allows us to compute graph invariants using basic linear
algebra; and
to implement data-mining tools to study networks, i.e., determine
patterns and features
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Algebraic Graph Theory

Graph Spectra: adjacency matrix

3

4

5

1 6

7 2

8

A =



0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0
1 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0



A =

{
1, i ∼ j
0, otherwise

here ∼ denotes that vertices i and j are adjacent
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Algebraic Graph Theory

Other Possibilities Include . . .

3

4

5

1 6

7 2

8

L =



2 0 0 −1 0 −1 0 0
0 2 0 0 0 −1 0 −1
0 0 1 −1 0 0 0 0

−1 0 −1 5 −1 0 −1 −1
0 0 0 −1 1 0 0 0

−1 −1 0 0 0 3 −1 0
0 0 0 −1 0 −1 2 0
0 −1 0 −1 0 0 0 2



Graph Laplacian

L =

{
di , i = j
−aij , otherwise

here di denotes the degree of node i
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Algebraic Graph Theory

Other Possibilities Include . . .

Normalised Laplacian:

L =

1, i = j
− aij√

di dj
, otherwise

Signless Laplacian:

Q =

{
di , i = j
aij , otherwise

less well studied
can determine bipartite structures (Kirkland and Paul 2011)

Line Graph:
used to detect community structure (Evans & Lambiotte 2010)

J. J. Crofts () UCSB 2011 August 5, 2011 10 / 51



UCSB 2011

Algebraic Graph Theory

An Example: neuronal network of C. elegans

C. elegans are tiny (1mm long),
transparent, round worms

Model organism in biology

Connectome consists of some
302 neurons linked by over 7000
synaptic connections
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Motivation
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Algebraic Graph Theory

Local C. elegans Neuronal Network

0 50 100

0

50

100

(a)

Adjacency Matrix

0 50 100

0

50

100

(b)

Reordered Adjacency Matrix

Reordering the frontal neurons of C. elegans using eigenvectors
of the signless Laplacian Q reveals bipartite substructures
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Algebraic Graph Theory

C. elegans Example Ctd.

0 10 20

0

10

20

Bipartite Substructure
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Algebraic Graph Theory

Properties of the Different Graph Spectra

Important: cospectral graphs are not necessarily isomorphic

Example:

χG = λ5 − 4λ3
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Algebraic Graph Theory

Properties of the Different Graph Spectra

Properties the spectrum (eigenvalues) can and cannot distinguish:

Matrix # edges bipartite # components # bipartite
components

A Yes Yes No No
L Yes No Yes No
L No Yes Yes Yes
Q Yes No No Yes
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Algebraic Graph Theory

Properties of the Different Graph Spectra

Which graphs are determined by their spectrum? (Van Dam &
Haemers (2003))

For almost all graphs this is an open question
Numerical simulations suggest that ‘almost all graphs are’

A combination of eigenvalues and eigenvectors does the trick,
e.g., subgraph centrality

CS (i) =
n∑

k=1

eλk x[k ]
2

i

CS =


1.6905
1.6905
3.7622
1.6905
1.6905

 &


2.3811
2.3811
1.0000
2.3811
2.3811
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Network Reorderings

An Example: short-range structure

The network reordering problem:

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

nz = 2804

A

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

nz = 2804

A(p,p)

• Solve

min
∑
{p∈P}

(pi − pj)
2aij

P denotes the set of permutations
of the integers {1, . . . ,n}

• An approximate solution is
given by the first, non-zero eigen-
-vector of L = D − A
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Network Reorderings

Directed Hierarchies

Directed Hierarchies

1

2

3

4 5

6 7

8

3

4

5

1 6

7 2

8

A =



0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0



A =



0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



In general it is possible to find such an ordering iff we have a DAG
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Network Reorderings

Directed Hierarchies

Out Minus In Degree

One-Sum Optimisation Problem

min
p∈P

∑
i,j

(pi − pj)aij

Proof

∑
i,j

(pj − pi)aij =
∑

i

pi · degout
i −

∑
j

pj · degin
j

=
∑

i

pi · (degout
i − degin

i )
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Network Reorderings

Directed Hierarchies

Synthetic Network Example

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 959

A

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 959

Sorted by in minus out degree

Hierarchical structure is uncovered in RHS using out-in degree
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Matrix Functions and Walks

Paths Vs Walks

Path Walk

Shortest Path
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Matrix Functions and Walks

Counting Walks

From the following identity

(Ak )ij =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik−1=1

ai,i1ai1,i2 · · · aik−1,j ,

we see that (Ak )ij counts the number of different walks of length k
between nodes i and j ; moreover, the quantity

Fij = (c0I + c1A + c2A2 + c3A3 · · · )ij

with the ck constant, gives a measure of the total number of walks
between nodes i and j
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Matrix Functions and Walks

Counting Walks: matrix functions

For suitable choices of {ck}k≥0 the series overpage converges
for example, ck = {δk}k≥0, gives the matrix resolvent (I− δA)−1

different choices of ck allow for different scalings

In particular, if f is defined on the spectrum of A, we can define

F = f (A) = Pf (D)P−1

(here A = PDP−1 is the eigendecomposition)

Proof Let

f (A) = c0I +
∞∑

k=1

ck Ak

substituting A = PDP−1 into the above

f (A) = f (PDP−1) = c0I +
∞∑

k=1

ck (PDP−1)k = P

c0I +
∞∑

k=1

ck Dk

 P−1
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Matrix Functions and Walks

Example: communicability

4

2

1

3 A =

( 0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

)
, A2 =

( 3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2

)
, · · ·

Communicability between distinct nodes i and j(
I + A + A2/2! + A3/3! + · · ·

)
ij

that is
(
eA)

ij

Spectral form:
(∑n

k=1 eλk x[k ](i)x[k ](j)
)

ij
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Matrix Functions and Walks

Example: communicability

0 50 100

0

50

100

A
exp(A)

Communicability applied to the frontal network of C. elegans
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Approximate Bipartite Substructures
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Matrix Functions and Walks

Approximate Bipartite Substructures

Approximate Directed Bipartite Community

Crofts, Estrada, Higham, Taylor Elec. Trans. Numer. Anal (2010)

Distinct subsets of nodes S1 and S2 such that
S1 has few internal links
S2 has few internal links
there are many S1 → S2 links
few other links involve S1 or S2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(c)
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Matrix Functions and Walks

Approximate Bipartite Substructures

An alternating walk of length k from node i1 to node ik+1

is a list of nodes
i1, i2, i3, . . . , ik+1

such that ais,is+1 6= 0 for s odd, and ais+1,is 6= 0 for s even

Loosely, an alternating walk is a traversal that successively follows
links in the forward and reverse directions
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Matrix Functions and Walks

Approximate Bipartite Substructures

This Motivates . . .

f (A) = I − A +
AAT

2!
− AAT A

3!
+

AAT AAT

4!
− · · ·

Overall idea: f (A) + f (AT ) has
positive values representing inter-community S1 ↔ S1
and S2 ↔ S2 relationships, and
negative values representing extra-community S1 ↔ S2
relationships

Also, f (A) + f (AT ) is a symmetric matrix, so
amenable to standard clustering techniques

Note: f (A) defined above is not a matrix function
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Matrix Functions and Walks

Approximate Bipartite Substructures

Synthetic Example

0

10

20

30
nz = 252

A

30
28
26
24
22
20
18
1614
12
10
8
6
4
2

exp(A)

 

 

0

50

100

150

30
28
26
24
22
20
18
1614
12
10
8
6
4
2

exp(−A)

 

 

−5

0

5

30
28
26
24
22
20
18
1614
12
10
8
6
4
2

f(A) + f(A T)

 

 

−500

0

500
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Matrix Functions and Walks

Approximate Bipartite Substructures

C. elegans Neural Data

Automates the computations of Durbin, (PhD thesis, Cambridge, 1987)

nz = 964

A

Reordered f(A) + f(AT)
nz = 96

Subnetwork of A
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Matrix Functions and Walks

Weighted Networks

Communicability for a Weighted Network

W is symmetric with non-negative real weights
Let

di =
n∑

k=1

wik & D := diag (di)

Normalisation:
W 7→ D−1/2WD−1/2

for at least 2 reasons
avoid overflow
to stifle promiscuous nodes

Communicability measure:

exp
(

D−1/2WD−1/2
)
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Matrix Functions and Walks

Weighted Networks

But What Does it Actually Mean?

4

2

1

3

w34

w14

w21

w23

w13

W =


0 w12 w13 w14

w21 0 w23 w24
w31 w32 0 w34
w41 w42 w43 0



The k th powers of W provide a
measure of the total strength
contained within walks of length k
between nodes i and j :

(W 2)ij =
∑

k

wikwkj , (W 3)ij = · · ·
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Matrix Functions and Walks

Weighted Networks

Example: anatomical connectivity data

9 subjects - at least 6 months
following first, left-hemisphere,
subcortical stroke; and 10 (18)
age matched controls
Diffusion Tensor Imaging
computes all connections
between all voxels
Connectivity network based on
the Harvard-Oxford cortical
and subcortical structural
atlas: 48 cortical regions and 8
subcortical regions

http://wwww.fmrib.ox.ac.uk/fsl/fslview/

atlas-descriptions.html

J. J. Crofts () UCSB 2011 August 5, 2011 39 / 51



UCSB 2011

Matrix Functions and Walks

Weighted Networks

Unsupervised Clustering of Patients
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Crofts & Higham, Roy. Soc. Interface (2009)
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Matrix Functions and Walks

Weighted Networks

Communicability Adds Value to the Raw Data
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Communicability (Control)
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Matrix Functions and Walks

Weighted Networks

What Are we Actually Detecting?

Question
Exactly what enables us to differentiate between strokes & controls?

If it is merely the fact that many connections have been destroyed
close to the infarcted region this is not very interesting – an MRI
scan can tell us this with no further analysis needed!

Why not rerun the tractographies including only those connections
within the non-stroke hemisphere?
If we still distinguish between the two classes, this will be more
relevant from a bio point of view
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Matrix Functions and Walks

Weighted Networks

RHS Hemisphere Sorted by Brain Region
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Left (Stroke Side) Vs Right

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

LHS

V
[2]

V
[3
]

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

RHS

V
[2]

V
[3
]

 

 

1

2

3

4

5

6

7

8

9

1

9

28

7

4

5

6

3

J. J. Crofts () UCSB 2011 August 5, 2011 44 / 51



UCSB 2011

Matrix Functions and Walks

Weighted Networks

Overlay of Stroke Overlap Volume

Highlighted regions are those where patients showed reduced
communicability relative to controls
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Weighted Networks

Crofts et al. NeuroImage (2011)

And increased communicability
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Weighted Networks

GSVD

Generalised singular value decomposition

A = UCX−1 and B = VSX−1

of a pair of matrices can be used to determine clusters that are
‘good’ in one network and ‘poor’ in the other - and vice versa
[Xiao et al. (2011)]

Another way to understand this is to note that, in the case where
A and B are invertible the GSVD is closely related to the SVD of
AB−1 and BA−1, hence

AB−1 = UCS−1V T and BA−1 = VSC−1UT
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GSVD Example: anatomical connectivity data
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GSVD finds a group of brain regions that are much better connected in
controls than strokes
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Outline
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2 Algebraic Graph Theory
3 Network Reorderings

Directed Hierarchies
4 Matrix Functions and Walks

Approximate Bipartite Substructures
Weighted Networks

Strokes Vs Controls
5 Connecting it all Together
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The Take Home Message

Spectral methods provide a useful tool for determining
different types of network architecture

scalable
most work has focused on the adjacency matrix

Walk based measures are attractive since:
combinatorics are described in terms of basic linear algebra
information does not necessarily flow along geodesics
walks are more tolerent to errors

GSVD and extensions:
tensor decompositions (plus multiple tasks/modalities,
time-dependent networks)
NNMF (Lee et al (2010)), ICA (Smith et al (2005))
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Thank you!

Colleagues at Strathclyde: Des Higham, Ernesto Estrada & Alan
Taylor

Colleagues from Oxford: Heidi Johanson-Berg & Tim Behrens
The stroke data was supplied by Rose Bosnell

This work was supported by the Medical Research Council under
project no. MRC G0601353
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