Spectral Methods and Algorithms: applications in neuroscience

Jonathan J. Crofts
Department of Physics \& Mathematics
Nottingham Trent University

August 5, 2011
jonathan.crofts@ntu.ac.uk

Outline

1 Introduction and Motivation
2 Algebraic Graph Theory
3 Network Reorderings
■ Directed Hierarchies
4 Matrix Functions and Walks
■ Approximate Bipartite Substructures
■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together

Background

Joel E. Cohen
 Mathematics is biology's next microscope, only better

Background

Joel E. Cohen
 Mathematics is biology's next microscope, only better

Quantative/computational work in biology may be data driven or may arise through modelling

Model

Quantative, simplified description of a natural system

Useful for
e testing/comparing hypotheses
© making predictions
This talk will focus on networks: extracting useful information and modelling

Typical Tasks

Data Driven:

■ find well-connected clusters

- find specific connectivity substructures
- find 'important' nodes or links
- compare the properties of one network with another

Modelling Arguments:

- summarize a network in terms of a few parameters
- explain how the connectivity has arisen
- discover missing or spurious links
- make predictions concerning future growth of the network

Network Science: connections are important

Complex networks are the structural skeletons of complex systems

Outline

1 Introduction and Motivation

2 Algebraic Graph Theory
3 Network Reorderings ■ Directed Hierarchies
4 Matrix Functions and Walks

- Approximate Bipartite Substructures

■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together

LAlgebraic Graph Theory

Graph Spectra

Spectral methods:

© matrix representation of the network
e study the spectra of the resulting matrix, i.e., eigenvalues and eigenvectors

Graph Spectra

Spectral methods:

© matrix representation of the network
e study the spectra of the resulting matrix, i.e., eigenvalues and eigenvectors

Importantly:
e this allows us to compute graph invariants using basic linear algebra; and
e to implement data-mining tools to study networks, i.e., determine patterns and features

Graph Spectra: adjacency matrix

$$
A= \begin{cases}1, & i \sim j \\ 0, & \text { otherwise }\end{cases}
$$

here \sim denotes that vertices i and j are adjacent

LAlgebraic Graph Theory

Other Possibilities Include ...

Graph Laplacian

$$
L= \begin{cases}d_{i}, & i=j \\ -a_{i j}, & \text { otherwise }\end{cases}
$$

here d_{i} denotes the degree of node i

Other Possibilities Include . . .

Normalised Laplacian:

$$
\mathcal{L}= \begin{cases}1, & i=j \\ -\frac{a_{j i}}{\sqrt{d_{i j} d_{j}}}, & \text { otherwise }\end{cases}
$$

Signless Laplacian:

$$
Q= \begin{cases}d_{i}, & i=j \\ a_{i j}, & \text { otherwise }\end{cases}
$$

- less well studied
- can determine bipartite structures (Kirkland and Paul 2011)

Line Graph:

■ used to detect community structure (Evans \& Lambiotte 2010)

An Example: neuronal network of C. elegans

© C. elegans are tiny (1 mm long), transparent, round worms

■ Model organism in biology
■ Connectome consists of some 302 neurons linked by over 7000 synaptic connections

Motivation

Local C. elegans Neuronal Network

Adjacency Matrix
(a)

Reordered Adjacency Matrix

© Reordering the frontal neurons of C . elegans using eigenvectors of the signless Laplacian Q reveals bipartite substructures

C. elegans Example Ctd.

Properties of the Different Graph Spectra

Important: cospectral graphs are not necessarily isomorphic

LAlgebraic Graph Theory

Properties of the Different Graph Spectra

Important: cospectral graphs are not necessarily isomorphic

Example:

$$
\chi_{G}=\lambda^{5}-4 \lambda^{3}
$$

Properties of the Different Graph Spectra

Properties the spectrum (eigenvalues) can and cannot distinguish:

Matrix	\# edges	bipartite	\# components	\# bipartite components
A	Yes	Yes	No	No
L	Yes	No	Yes	No
\mathcal{L}	No	Yes	Yes	Yes
Q	Yes	No	No	Yes

Properties of the Different Graph Spectra

© Which graphs are determined by their spectrum? (Van Dam \& Haemers (2003))

■ For almost all graphs this is an open question
■ Numerical simulations suggest that 'almost all graphs are’

Properties of the Different Graph Spectra

© Which graphs are determined by their spectrum? (Van Dam \& Haemers (2003))

■ For almost all graphs this is an open question
■ Numerical simulations suggest that 'almost all graphs are’
© A combination of eigenvalues and eigenvectors does the trick, e.g., subgraph centrality

$$
C_{\mathcal{S}}(i)=\sum_{k=1}^{n} e^{\lambda_{k}} \mathbf{x}_{i}^{[k]^{2}}
$$

$$
C_{\mathcal{S}}=\left(\begin{array}{l}
1.6905 \\
1.6905 \\
3.7622 \\
1.6905 \\
1.6905
\end{array}\right) \quad \& \quad\left(\begin{array}{l}
2.3811 \\
2.3811 \\
1.0000 \\
2.3811 \\
2.3811
\end{array}\right)
$$

Outline

1 Introduction and Motivation

2 Algebraic Graph Theory
3 Network Reorderings
■ Directed Hierarchies
4 Matrix Functions and Walks
■ Approximate Bipartite Substructures
■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together

An Example: short-range structure

© The network reordering problem:

An Example: short-range structure

© The network reordering problem:

- Solve

$$
\min \sum_{\{p \in \mathcal{P}\}}\left(p_{i}-p_{j}\right)^{2} a_{i j}
$$

\mathcal{P} denotes the set of permutations of the integers $\{1, \ldots, n\}$

An Example: short-range structure

© The network reordering problem:

- Solve

$$
\min \sum_{\{p \in \mathcal{P}\}}\left(p_{i}-p_{j}\right)^{2} a_{i j}
$$

\mathcal{P} denotes the set of permutations of the integers $\{1, \ldots, n\}$

- An approximate solution is given by the first, non-zero eigen--vector of $L=D-A$

L Network Reorderings

- Directed Hierarchies

Outline

1 Introduction and Motivation
2 Algebraic Graph Theory
3 Network Reorderings
■ Directed Hierarchies
4 Matrix Functions and Walks
■ Approximate Bipartite Substructures
■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together
$L_{\text {Network Reorderings }}$
L Directed Hierarchies

Directed Hierarchies

$\left\llcorner_{\text {Network Reorderings }}\right.$

- Directed Hierarchies

Directed Hierarchies

e In general it is possible to find such an ordering iff we have a DAG
$L_{\text {Network Reorderings }}$
$\left\llcorner_{\text {Directed Hierarchies }}\right.$

Out Minus In Degree

One-Sum Optimisation Problem

$$
\min _{p \in \mathcal{P}} \sum_{i, j}\left(p_{i}-p_{j}\right) a_{i j}
$$

$L_{\text {Network Reorderings }}$
L Directed Hierarchies

Out Minus In Degree

One-Sum Optimisation Problem

$$
\min _{p \in \mathcal{P}} \sum_{i, j}\left(p_{i}-p_{j}\right) a_{i j}
$$

Proof

$$
\begin{aligned}
\sum_{i, j}\left(p_{j}-p_{i}\right) a_{i j} & =\sum_{i} p_{i} \cdot \operatorname{deg}_{i}^{\text {out }}-\sum_{j} p_{j} \cdot \operatorname{deg}_{j}^{\text {in }} \\
& =\sum_{i} p_{i} \cdot\left(\operatorname{deg}_{i}^{\text {out }}-\operatorname{deg}_{i}^{\text {in }}\right)
\end{aligned}
$$

$L_{\text {Network Reorderings }}$

- Directed Hierarchies

Synthetic Network Example

e Hierarchical structure is uncovered in RHS using out-in degree

Outline

1 Introduction and Motivation
2 Algebraic Graph Theory
3 Network Reorderings - Directed Hierarchies

4 Matrix Functions and Walks
■ Approximate Bipartite Substructures
■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together
$\left\llcorner_{\text {Matrix Functions and Walks }}\right.$

Paths Vs Walks

Path

Walk

Shortest Path

$L_{\text {Matrix Functions and Walks }}$

Counting Walks

From the following identity

$$
\left(A^{k}\right)_{i j}=\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \cdots \sum_{i_{k-1}=1}^{n} a_{i, i_{1}} a_{i_{1}, i_{2}} \cdots a_{i_{k-1}, j}
$$

we see that $\left(A^{k}\right)_{i j}$ counts the number of different walks of length k between nodes i and j;
$\left\llcorner_{\text {Matrix Functions and Walks }}\right.$

Counting Walks

From the following identity

we see that $\left(A^{k}\right)_{i j}$ counts the number of different walks of length k
between nodes i and j; moreover, the quantity

$$
F_{i j}=\left(c_{0} I+c_{1} A+c_{2} A^{2}+c_{3} A^{3} \cdots\right)_{i j}
$$

with the c_{k} constant, gives a measure of the total number of walks between nodes i and j

Counting Walks: matrix functions

© For suitable choices of $\left\{c_{k}\right\}_{k \geq 0}$ the series overpage converges
■ for example, $c_{k}=\left\{\delta^{k}\right\}_{k \geq 0}$, gives the matrix resolvent $(\mathbf{I}-\delta \mathbf{A})^{-1}$
■ different choices of c_{k} allow for different scalings

Counting Walks: matrix functions

© For suitable choices of $\left\{c_{k}\right\}_{k \geq 0}$ the series overpage converges
■ for example, $\boldsymbol{c}_{k}=\left\{\delta^{k}\right\}_{k \geq 0}$, gives the matrix resolvent $(\mathbf{I}-\delta \mathbf{A})^{-\mathbf{1}}$

- different choices of c_{k} allow for different scalings
© In particular, if f is defined on the spectrum of A, we can define

$$
F=f(A)=P f(D) P^{-1}
$$

(here $\mathrm{A}=\mathrm{PDP}^{-1}$ is the eigendecomposition)
Proof Let

$$
f(A)=c_{0} I+\sum_{k=1}^{\infty} c_{k} A^{k}
$$

substituting $A=P D P^{-1}$ into the above

$$
f(A)=f\left(P D P^{-1}\right)=c_{0} I+\sum_{k=1}^{\infty} c_{k}\left(P D P^{-1}\right)^{k}=P\left(c_{0} I+\sum_{k=1}^{\infty} c_{k} D^{k}\right) P^{-1}
$$

$L_{\text {Matrix Functions and Walks }}$

Example: communicability

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right), A^{2}=\left(\begin{array}{llll}
3 & 1 & 2 & 1 \\
1 & 2 & 1 & 2 \\
2 & 1 & 3 & 1 \\
1 & 2 & 1 & 2
\end{array}\right), \cdots
$$

Communicability between distinct nodes i and j

$$
\left(1+A+A^{2} / 2!+A^{3} / 3!+\cdots\right)_{i j}
$$

that is $\left(e^{A}\right)_{i j}$
Spectral form: $\left(\sum_{k=1}^{n} e^{\lambda_{k}} \mathbf{x}^{[k]}(i) \mathbf{x}^{[k]}(j)\right)_{i j}$

Example: communicability

$\exp (\mathrm{A})$

Communicability applied to the frontal network of C. elegans
$\square_{\text {Matrix Functions and Walks }}$
$\square_{\text {Approximate Bipartite Substructures }}$

Outline

> 1 Introduction and Motivation
> 2 Algebraic Graph Theory
> 3 Network Reorderings - Directed Hierarchies

4 Matrix Functions and Walks
■ Approximate Bipartite Substructures

- Weighted Networks
- Strokes Vs Controls

5 Connecting it all Together

- Matrix Functions and Walks

$\square_{\text {Approximate Bipartite Substructures }}$

Approximate Directed Bipartite Community

Crofts, Estrada, Higham, Taylor Elec. Trans. Numer. Anal (2010)

Distinct subsets of nodes S_{1} and S_{2} such that

- S_{1} has few internal links
- S_{2} has few internal links
- there are many $S_{1} \rightarrow S_{2}$ links
- few other links involve S_{1} or S_{2}

$L_{\text {Matrix Functions and Walks }}$
$\square_{\text {Approximate Bipartite Substructures }}$

An alternating walk of length k from node i_{1} to node i_{k+1}

is a list of nodes

$$
i_{1}, i_{2}, i_{3}, \ldots, i_{k+1}
$$

such that $a_{i_{s}, i_{s+1}} \neq 0$ for s odd, and $a_{i_{s+1}}, i_{s} \neq 0$ for s even
Loosely, an alternating walk is a traversal that successively follows links in the forward and reverse directions

$\square_{\text {Matrix Functions and Walks }}$
$\square_{\text {Approximate Bipartite Substructures }}$

This Motivates . . .

$$
f(A)=I-A+\frac{A A^{T}}{2!}-\frac{A A^{T} A}{3!}+\frac{A A^{T} A A^{T}}{4!}-\cdots
$$

Overall idea: $f(A)+f\left(A^{T}\right)$ has
■ positive values representing inter-community $S_{1} \leftrightarrow S_{1}$ and $S_{2} \leftrightarrow S_{2}$ relationships, and
■ negative values representing extra-community $S_{1} \leftrightarrow S_{2}$ relationships

Also, $f(A)+f\left(A^{T}\right)$ is a symmetric matrix, so amenable to standard clustering techniques

Note: $f(A)$ defined above is not a matrix function

UCSB 2011

- Matrix Functions and Walks
- Approximate Bipartite Substructures

Synthetic Example

$$
n z=252
$$

Matrix Functions and Walks

- Approximate Bipartite Substructures

C. elegans Neural Data

Automates the computations of Durbin, (PhD thesis, Cambridge, 1987)

Subnetwork of A

$\square_{\text {Matrix Functions and Walks }}$
-Weighted Networks

Outline

1 Introduction and Motivation
2 Algebraic Graph Theory
3 Network Reorderings - Directed Hierarchies

4 Matrix Functions and Walks

- Approximate Bipartite Substructures

■ Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together
$L_{\text {Matrix Functions and Walks }}$
-Weighted Networks

Communicability for a Weighted Network

W is symmetric with non-negative real weights
Let

$$
d_{i}=\sum_{k=1}^{n} w_{i k} \quad \& \quad D:=\operatorname{diag}\left(d_{i}\right)
$$

Normalisation:

$$
W \mapsto D^{-1 / 2} W D^{-1 / 2}
$$

for at least 2 reasons
■ avoid overflow

- to stifle promiscuous nodes
$L_{\text {Matrix Functions and Walks }}$
- Weighted Networks

Communicability for a Weighted Network

W is symmetric with non-negative real weights
Let

$$
d_{i}=\sum_{k=1}^{n} w_{i k} \quad \& \quad D:=\operatorname{diag}\left(d_{i}\right)
$$

Normalisation:

$$
W \mapsto D^{-1 / 2} W D^{-1 / 2}
$$

for at least 2 reasons

- avoid overflow
- to stifle promiscuous nodes

Communicability measure:

$$
\exp \left(D^{-1 / 2} W D^{-1 / 2}\right)
$$

$L_{\text {Matrix Functions and Walks }}$

- Weighted Networks

But What Does it Actually Mean?

$$
W=\left(\begin{array}{cccc}
0 & w_{12} & w_{13} & w_{14} \\
w_{21} & 0 & w_{23} & w_{24} \\
w_{31} & w_{32} & 0 & w_{34} \\
w_{41} & w_{42} & w_{43} & 0
\end{array}\right)
$$

The k th powers of W provide a measure of the total strength contained within walks of length k between nodes i and j :

$$
\left(W^{2}\right)_{i j}=\sum_{k} w_{i k} w_{k j},\left(W^{3}\right)_{i j}=\cdots
$$

$\square_{\text {Matrix Functions and Walks }}$
LWeighted Networks

Example: anatomical connectivity data

© 9 subjects - at least 6 months following first, left-hemisphere, subcortical stroke; and 10 (18) age matched controls
© Diffusion Tensor Imaging computes all connections between all voxels
© Connectivity network based on the Harvard-Oxford cortical and subcortical structural atlas: 48 cortical regions and 8 subcortical regions

http://wwww.fmrib.ox.ac.uk/fsl/fslview/
atlas-descriptions.html

- Matrix Functions and Walks

- Weighted Networks

Unsupervised Clustering of Patients

Crofts \& Higham, Roy. Soc. Interface (2009)
$\square_{\text {Matrix Functions and Walks }}$
-Weighted Networks

Communicability Adds Value to the Raw Data

Communicability (Control)

$L_{\text {Matrix Functions and Walks }}$

- Weighted Networks

What Are we Actually Detecting?

Question

Exactly what enables us to differentiate between strokes \& controls?

What Are we Actually Detecting?

Question

Exactly what enables us to differentiate between strokes \& controls?
© If it is merely the fact that many connections have been destroyed close to the infarcted region this is not very interesting - an MRI scan can tell us this with no further analysis needed!

- Why not rerun the tractographies including only those connections within the non-stroke hemisphere?
■ If we still distinguish between the two classes, this will be more relevant from a bio point of view
- Matrix Functions and Walks

LWeighted Networks

RHS Hemisphere Sorted by Brain Region

$\square_{\text {Matrix Functions and Walks }}$

-Weighted Networks

Left (Stroke Side) Vs Right

$\square_{\text {Matrix Functions and Walks }}$
-Weighted Networks

Overlay of Stroke Overlap Volume

Highlighted regions are those where patients showed reduced communicability relative to controls

UCSB 2011

Matrix Functions and Walks
-Weighted Networks

Crofts et al. Neurolmage (2011)

And increased communicability
$L_{\text {Matrix Functions and Walks }}$

- Weighted Networks

GSVD

© Generalised singular value decomposition

$$
A=U C X^{-1} \quad \text { and } \quad B=V S X^{-1}
$$

of a pair of matrices can be used to determine clusters that are 'good' in one network and 'poor' in the other - and vice versa [Xiao et al. (2011)]
© Another way to understand this is to note that, in the case where A and B are invertible the GSVD is closely related to the SVD of $A B^{-1}$ and $B A^{-1}$, hence

$$
A B^{-1}=U C S^{-1} V^{T} \quad \text { and } \quad B A^{-1}=V S C^{-1} U^{T}
$$

GSVD Example: anatomical connectivity data

Controls

Stroke

GSVD finds a group of brain regions that are much better connected in controls than strokes

Outline

1 Introduction and Motivation
2 Algebraic Graph Theory
3 Network Reorderings ■ Directed Hierarchies
4 Matrix Functions and Walks ■ Approximate Bipartite Substructures - Weighted Networks

- Strokes Vs Controls

5 Connecting it all Together

The Take Home Message

© Spectral methods provide a useful tool for determining different types of network architecture

- scalable
- most work has focused on the adjacency matrix

The Take Home Message

© Spectral methods provide a useful tool for determining different types of network architecture

■ scalable

- most work has focused on the adjacency matrix
© Walk based measures are attractive since:
■ combinatorics are described in terms of basic linear algebra
■ information does not necessarily flow along geodesics
- walks are more tolerent to errors

The Take Home Message

© Spectral methods provide a useful tool for determining different types of network architecture

- scalable
- most work has focused on the adjacency matrix
© Walk based measures are attractive since:
■ combinatorics are described in terms of basic linear algebra
■ information does not necessarily flow along geodesics
- walks are more tolerent to errors
e GSVD and extensions:
- tensor decompositions (plus multiple tasks/modalities, time-dependent networks)
■ NNMF (Lee et al (2010)), ICA (Smith et al (2005))

Thank you!

Colleagues at Strathclyde: Des Higham, Ernesto Estrada \& Alan Taylor

Colleagues from Oxford: Heidi Johanson-Berg \& Tim Behrens The stroke data was supplied by Rose Bosnell

This work was supported by the Medical Research Council under project no. MRC G0601353

