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Outline
|. Brief overview of what | work on
ll. Feedback Control Theory: what is it good for... (tutorial: ~30 min)
lIl. (option 1) Bio-plausible architectures for insect-inspired control systems
V. (option 2) Modern architectures for autonomous systems
V. (option 3) Early weekend




Control of Complex Systems
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e Dominant challenges:
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Motor
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e Dominant challenges:
(lack of) modularity,
stochastic program’g




Design Patterns for (Engineered) Control Systems

Reactive compensation e Reference input shaping

e Feedback on output error
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e Goals: stability, performance
(tracking), robustness
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e Explicit computation of trajectories given a model of the process and environment
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Frequency Response, Transfer Functions, Block Diagrams
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Two Main Principles of Control

Robustness to Uncertainty thru Feedback

e Feedback allows high performance in the 82 . 3R g

presence of uncertainty 3. 5 fo £ ca Y55
. g R1 3 _"'NXL L.oh — 01 uF

e Example: repeatable performance of amplifiers oL Zz
with 5X component variation 2.96v1 T Txcz T 0

e Key idea: accurate sensing to compare actual to i 5 S
desired, correction through computation and
actuation

Design of Dynamics through Feedback

e Feedback allows the dynamics of a system to be
modified

e Example: stability augmentation for highly agile,
unstable aircraft

e Key idea: interconnection gives closed loop that
modifies natural behavior

Control involves (computable) tradeoffs between
robustness and performance
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Control Tools: 1940-2000

Modeling

e Input/output representations for
subsystems + interconnection rules

e System identification theory and
algorithms

e Theory and algorithms for reduced
order modeling + model reduction

Analysis

e Stability of feedback systems,
including robustness “margins”

e Performance of input/output systems
(disturbance rejection, robustness)

Synthesis

e Constructive tools for design of
feedback systems

e Constructive tools for signal
processing and estimation
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Basic feedback loop
d

r-»@—e» C(s) i’»@—» P(s) >y

L

e Plant, P = process being regulated

» Reference, r = external input (often
encodes the desired setpoint)

e Disturbances, d = external
environment

e Error, e = reference - actual
 Input, u = actuation command
» Feedback, C = closed loop correction

e Uncertainty: plant dynamics, sensor
noise, environmental disturbances
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Canonical Feedback Example: PID Control
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Ermor Prezent

. | T
r = Ax + Bu t
y = Ca _-||: Y w(t) = ke(t) + kZ/O e(t)dr + kddf;(tt)
Three term controller PID design
e Present: feedback proportional to current « Choose gains k, k;, k4 to obtain the
error desired behavior
¢ Past: feedback proportional to integral of « Stability: solutions of the closed loop
past error dynamics should converge to eq pt
= Insures that error eventual goes to 0 « Performance: output of system, v,
- Automatically adjusts setpoint of input should track reference
e Future: derivative of the error * Robustness: stability & performance

properties should hold in face of

= Anticipate where we are goin
P 90Ing disturbances and plant uncertainty
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Determine stability from (open) loop .

transfer function, L(s) = P(s) C(s).

e Use “principle of the argument” from
complex variable theory (see reading)

Thm (Nyquist). Consider the Nyquist plot
for loop transfer function L(s). Let

P # RHP poles of L(s)

N # clockwise encirclements of -1
Z #RHP zeros of 1 + L(s)

Then
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Z=N+P

.joo

= Real

Nyquist Diagrams

Real Axis
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Nyquist “D”
contour

Take limit as
r-0,R— o

Trace from —-oo
to +oo along
imaginary axis

Trace frequency
response for L(s)
along the
Nyquist “D”
contour

Count net # of
clockwise
encirclements of
the -1 point




Feedforward and Feedback
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Benefits of feedforward compensation
e Allows online generation of trajectories based on current situation/environment
e Optimization-based approaches can handle constraints, tradeoffs, uncertainty
® Trajectories can be pre-stored and used when certain conditions are met

Replanning using receding horizon

® |dea: regenerate trajectory based on new
states, environment, constraints, etc

e Provides “outer loop” feedback at slower
timescale

e Stability results available
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Limits of Performance

Q: How well can you reject a disturbance?
e \Would like v to be as small as possible

e Assume that we have signals v(f), d(f) that
satisfy the loop dynamics

e Take Fourier transforms V(w), D(w)

(S

r—>®—>

C(s)

T

P(s)

e Sensitivity function: S(w) = V(w)/D(w); want S(w) « 1 for good performance

Thm (Bode) Under appropriate conditions (causality, non-passivity)

/ log |S(w)|dw > 0
0

Consequences: achievable performance is bounded

e Better tracking in some frequency band = other bands get worse
e For linear systems, formula is known as the Bode integral formula (get equality)

® “Passive” (positive real) systems can beat this bound

Extensions

® Discrete time nonlinear systems: similar formula holds (Doyle)
® |[ncorporate Shannon limits for communication of disturbances (Martins et al)
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Example: Magnetic Levitation System

Nominal design gives low perf Bode integral limits improvement
e Not enough gain at low frequency 0
e Try to adjust overall gain to improve / log |S(jw)|dw = nr
low frequency response 0 o
e Works well at moderate gain, but . Mu_st Increase sensitivity at some
notice waterbed effect point

Sensitivity Function
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Stability in the Presence of Uncertainty

Characterize stability in terms of stability margin sm

I
e Stability margin = distance on Nyquist plot to -1 point PR -
e Stability margin = 1/Ms (Ms = maximum sensitivity) /// N
1 /
My = max |S(iw)| = max AR i\
$m =min |(—1) — L| = min|1 + L| = 1/M, "\

e For robustness analysis, stability margin is more useful
than classical gain and phase margins

Robust stability: verify no new net encirclements occur
e Assume that nominal system is stable
® New loop transfer function: 7 _ (P+AYC =L+ CA
* No net encirclements as long as |cA| < |1 + L
e Can rewrite as bound on allowable perturbation

1+ PC

A\ Im

M < [Fg]=[z] e =[5l < i

e |f condition is satlsfled, then sm will never cross to zero
=> no new net encirclements
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Robust Control Theory

Model components as I/O operators

W, |e——

d  disturbance signal

—»
d | p W, — z z output signal
—>
A uncertainty block
w, performance weight
C

W, uncertainty weight

Goal: guaranteed performance in presence of uncertainty

|2ll, =y lldll, forall |all<1

e Compare energy in disturbances to energy in outputs

e Use frequency weights to change performance/uncertainty descriptions
e “Can | get X level of performance even with Y level of uncertainty?”
e Generalizations to nonlinear systems (along trajectories) available [Tierno et al]
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Networked Control Systems

(following P. R. Kumar)

External Environment

3|qeloYy:4opaa4

Command:FIFO

|
|
|
jm=--—----=-- Online Model LECELEET LN
I o
|

Inner Loop Mode and Traj:Causal Online Map:Causal

(PID, H)) = 11] ) S — — —————
Management

Optimization Estimation
10 Mb/s
(RHC, MILP) (KF, MHE)

I State:Unreliable 1 100 Kb/s

Goal Mgmt Attention &
(MDS) Awareness

Memory and
Learning
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Fax and M

TAC, 2004
Stability of Interconnected Systems
Goal: maintain state/outputs relative to neighbors ; | :
e “Neighbors” defined by a directed graph / \
e Assume only sensed data (system outputs) for now
e Assume identical dynamics, identical controllers
Example: hexagon formation ¥
e Maintain fixed relative spacing between left & right neighbors = s
€ = W'(yi_y'_hi') el . u N e ™
JEEN / T K(s) S Bs) 4 P(s)=——
T relative I S
position ey ) K(s)=K, s+ K,
weighting offset d
factor \
Theorem (Fax & M, 2004) The closed loop system is (neutrally)
stable iff the Nyquist plot of the open loop system does not ’*‘\ A
encircle -1/Ai(L), where Ai(L) are the nonzero eigenvalues of L RN XV ;}
X ;
e |inks topology of graph (via Laplacian) to dynamics of agents J‘;/ 7
e Can extend to discrete time, MIMO, nonlinear
/
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Summary: Control Theory

Two main principles of (feedback) control theory
® Feedback is a tool to provide robustness to uncertainty
= Uncertainty = noise, disturbances, unmodeled dynamics
= Useful for modularity: consistent behavior of subsystems
e Feedback is a tool to design the dynamics of a system
- Convert unstable systems to stable systems
- Tune the performance of a system to meet specifications
Control theory is (primarily) a design-oriented theory

® Tools were developed to help engineers design control systems
e Analysis tools and fundamental limits can be used for natural systems

Karl Johan Astrém & Richard M. Murray

More information
® Feedback Systems: http://www.cds.caltech.edu/~murray/FBSwiki
® Optimization-Based Control: http://www.cds.caltech.edu/~murray/FBSwiki/OBC
e Additional references posted on the mini-program wiki
Next
e (option 1) Bio-plausible architectures for insect-inspired control systems
e (option 2) Modern architectures for autonomous systems
e (option 3) Early weekend
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Bioplausible Approaches to Control
using Distributed, Slow Computing

Richard M. Murray
Control & Dynamical Systems and Bioengineering
California Institute of Technology

Andrea Censi Sawyer Fuller Shuo Han Andrew Straw
Javad Lavaei Somayeh Sojoudi

NSF CPS Workshop
10 August 2010

Outline
|. Motivation (and definition of bioplausible + slow computing)
lI. Vision-based stabilization using bio-plausible control laws
lll. Design of interconnections and time-delays for feedback control
IVV. Future directions and next steps




Humbert, Dickinson & M
CDCO05

Networked Feedback Systems in Biology - Insects

compound
eve
4
/ haltere
antennae
* *
L]
wing & body forces & motion
motor code Kinematics moments through space
nervous muscles & aero- body sensory
systems skeleton dynamics dynamics landscape
“‘ Sensory
[ feedback

Different architecture than engineering

» Large collection of diverse sensors
(many more than required)

e Very slow computation with lots of
parallel pathways

Neurolunch, May 201 |

Photo-
receptors
+ EMDs

Wide-Field
Integration

z = f(z,u)

u= Ky

Stabilization of a goal image/optical flow

e Compute forces and torques based on
spatial integration of optimal flow

31’(:1:) = <(‘.2'-}‘Ti>'u.' - %/(;- (2(73:)}"1(’}) (1"3

/

e |ntegration kernel F encodes controller
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Fuller, Peek, Straw, Dickinson &M
(in progress)

Decoding the Architecture of Insec'r Fllgh'r Control

Fly wind tunnel/flight simulator

e Track flies in real-time, controlling wind
+ visual environ. (open/closed loop)

e High speed camera with location trigger
e Capture lots of data, then filter

Current focus: gust response

® Sensing systems: vision, halteres
(~gyros), aristae (antennae)

e How are different sensors integrated?
Serial, parallel, inner/outer, etc...

Y
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V. v st -0
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Disturbance (Airspeed) Sensor/Filter (Airspeed) Controller
Aerodynamics [ : 1/ms
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Censi, Han, Fuller, Straw and M
CDCO09

Bootstrappable Design for Visual Pose Stabilization

9 | goal image Approach: minimize image error
vision Y. ¥ f.r . rigid 1 1
S S 1 bod 2 2
SERSOF | luminance controfet force, torque d)'mu:ics —‘ J(q) = §<(y — g) > = 5 o (y(s) — g(S)) ds
r:pswyv . . H
e, velacitien e Can write the resulting controller in
(a) Model for purely visual pose stabilization. terms of Spatlal gradlents + prOdUCtS

T = |[I|| {(Sy)(g — v)) — kalIZ|| ((Sv) ¥},
F =am{(Vy) (g —y)) — amks (Vy) 7},

Lagged or delayed f

4L
Sy = s x Vsy y also works

e S can be learned (up to a positive
definite factor) by watching how the
environment moves given f, ¢

Structure of the resulting controller

» \Weights have a sparse structure:
take positive and negative products
of nearby sensors

e Controller with delayed y has similar
structure to Reichardt correlator
(rough measurement of optic flow)

v v
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Censi, Han, Fuller, Straw and M

Controller Implementation

Stripe fixation (rotation only):

3D pose experiments

5 .

3D pose stabilization (simulations):

23 M
e

(f) Artificial environment (g) Start/end images
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Lavaei, Sojoudi and M

ACC, 2010
Control Using Time Delay
ol ° T [ oxtermal Can we design control laws using
{nmodeled Dynamics (possibly variable) time delay?
Pi(s) 0 Nu ()| M) e Easy to obtain in many bio systems
Cz)—» oy IR B e — ¢ |dea: combine signals with different
‘ 0 P Noa()|[Naal?) amounts of delay to get control G(s)
System Dynamics Nonlinear Coupling e Approach: given G(s), implement
) . the |.mpulse response using delay +
1-2 integrators (or lags)
j i }
0 G(s): = Zoziy(t
Delay Matrix Interconnection Matrix
o 0.2
Preliminary results P
" Theorem 3: The approximation error ||G(jw) — G(jw)||~ 9 p
satisfies the following inequality: 0.2
\ J‘_..-'.""'
IG(s) — G(s)|o < V2 / 9(t)[dt + V2 / Bt o4/
e —g(t) —a(t)
' \/_(T 1= Ti)° "
. i 0.5 1 1.5 2 25
+2 max ()| =5 — Time (sec)

e Can also get bounds on error when delays vary (possibly useful for jitter?)
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Summary and Conclusions

Bioplausible approaches using slow computing

® | ook at the opposite extreme to high speed
computing; what can you do with a few watts...

e Approach #1: highly parallel computation using
lots of sensors and simple linear + nonlinear
ops

- Control design via interconnect + nonlinear
- Bootstrap algorithms thru online learning

e Approach #2: control using time delay n
- Treat time-delay as programmable element e Drnanies
- Fast compensation becomes trickier...

Next steps: 0

e Highly agile control of dynamic vehicles using
slow computing (DGC IV - beat the fly)

e Biomolecular implementations: motion control
in nanosystems (DGC V - beat the neutrophil)

e Design approaches that exploit data-rich
environments (learning, evolvability, ...)
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