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IV. (option 2) Modern architectures for autonomous systems
V. (option 3) Early weekend



Richard M. Murray, Caltech CDS/BEKITP, 28 Jul 2011

Control of Complex Systems

Alice
• 30 P4 cores @ 2+ GHz
• 30G mem, 3 Gb/s net
• 8 LADAR, 10 cameras
• 200k+ lines of code
• 50 engineers, 1.5 years
• 600 miles of self-driving
• Dominant challenges: 

(design for) verification 
and robustness

Drosophila
• 300k neurons @100 Hz
• ~600-1000 sensors
• Most neurons are 

dedicated to sensor 
processing

• Architecture (?)

• Dominant challenges: 
decoding organization 
and architecture

Neutrophil
• DNA: 3G base pairs
• 20k genes, ~3kb each 
• Transcription: 75 bp/

sec => 40 sec “clock”
• Life span: 12 hours
• Architecture (?)

• Dominant challenges: 
(lack of) modularity, 
stochastic program’g
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Sawyer Fuller (Caltech), Nov 08

Gwenyth Card (Caltech), Apr 06
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Design Patterns for (Engineered) Control Systems
Reactive compensation

Predictive compensation

• Explicit computation of trajectories given a model of the process and environment
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Environment

Feedback

• Reference input shaping
• Feedback on output error
• Compensator dynamics 

shape closed loop response
• Uncertainty in process 

dynamics + external 
disturbances and noise
• Goals: stability, performance 

(tracking), robustness
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Frequency Response, Transfer Functions, Block Diagrams
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Two Main Principles of Control
Robustness to Uncertainty thru Feedback
• Feedback allows high performance in the 

presence of uncertainty
• Example: repeatable performance of amplifiers 

with 5X component variation
• Key idea: accurate sensing to compare actual to 

desired, correction through computation and 
actuation

Design of Dynamics through Feedback
• Feedback allows the dynamics of a system to be 

modified
• Example: stability augmentation for highly agile, 

unstable aircraft
• Key idea: interconnection gives closed loop that 

modifies natural behavior

Control involves (computable) tradeoffs between 
robustness and performance
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Control Tools: 1940-2000
Modeling
• Input/output representations for 

subsystems + interconnection rules
• System identification theory and 

algorithms 
• Theory and algorithms for reduced 

order modeling + model reduction

Analysis
• Stability of feedback systems, 

including robustness “margins”
• Performance of input/output systems 

(disturbance rejection, robustness)

Synthesis
• Constructive tools for design of 

feedback systems
• Constructive tools for signal 

processing and estimation

Basic feedback loop

• Plant, P = process being regulated
• Reference, r = external input (often 

encodes the desired setpoint)
• Disturbances, d = external 

environment
• Error, e = reference - actual
• Input, u = actuation command
• Feedback, C = closed loop correction
• Uncertainty: plant dynamics, sensor 

noise, environmental disturbances

r C(s) ++

d

y
e

P(s)
u

-1
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Canonical Feedback Example: PID Control

Three term controller 
• Present: feedback proportional to current 

error

• Past: feedback proportional to integral of 
past error

- Insures that error eventual goes to 0
- Automatically adjusts setpoint of input

• Future: derivative of the error
- Anticipate where we are going

PID design
• Choose gains k, ki, kd to obtain the 

desired behavior
• Stability: solutions of the closed loop 

dynamics should converge to eq pt
• Performance: output of system, y, 

should track reference
• Robustness: stability & performance 

properties should hold in face of 
disturbances and plant uncertainty

r C(s) ++

d

y
e

P(s)
u

-1



Richard M. Murray, Caltech CDS/BEKITP, 28 Jul 2011 8

Nyquist Criterion

Determine stability from (open) loop 
transfer function, L(s) = P(s)C(s). 
• Use “principle of the argument” from 

complex variable theory (see reading)

Thm (Nyquist).  Consider the Nyquist plot 
for loop transfer function L(s).  Let
 P # RHP poles of L(s)
 N # clockwise encirclements of -1
 Z  # RHP zeros of 1 + L(s)
Then

Z = N + P

• Nyquist “D” 
contour

• Take limit as 
r → 0, R → ∞

• Trace from −1 
to +1 along 
imaginary axis

• Trace frequency 
response for L(s) 
along the 
Nyquist “D” 
contour

• Count net # of 
clockwise 
encirclements of 
the -1 point
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Feedforward and Feedback

Benefits of feedforward compensation
• Allows online generation of trajectories based on current situation/environment
• Optimization-based approaches can handle constraints, tradeoffs, uncertainty
• Trajectories can be pre-stored and used when certain conditions are met

Replanning using receding horizon
• Idea: regenerate trajectory based on new

states, environment, constraints, etc
• Provides “outer loop” feedback at slower

timescale
• Stability results available
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Environment



Richard M. Murray, Caltech CDS/BEKITP, 28 Jul 2011

Limits of Performance
Q: How well can you reject a disturbance?
• Would like v to be as small as possible
• Assume that we have signals v(t), d(t) that

satisfy the loop dynamics
• Take Fourier transforms V(ω), D(ω)
• Sensitivity function: S(ω) = V(ω)/D(ω); want S(ω) « 1 for good performance

Thm (Bode) Under appropriate conditions (causality, non-passivity)

Consequences: achievable performance is bounded
• Better tracking in some frequency band ⇒ other bands get worse
• For linear systems, formula is known as the Bode integral formula (get equality)
• “Passive” (positive real) systems can beat this bound

Extensions
• Discrete time nonlinear systems: similar formula holds (Doyle)
• Incorporate Shannon limits for communication of disturbances (Martins et al)
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Example: Magnetic Levitation System
Nominal design gives low perf
• Not enough gain at low frequency
• Try to adjust overall gain to improve 

low frequency response
• Works well at moderate gain, but 

notice waterbed effect

Bode integral limits improvement

� Must increase sensitivity at some 
point
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Stability in the Presence of Uncertainty
Characterize stability in terms of stability margin sm
• Stability margin = distance on Nyquist plot to -1 point
• Stability margin = 1/Ms (Ms = maximum sensitivity)

• For robustness analysis, stability margin is more useful 
than classical gain and phase margins

Robust stability: verify no new net encirclements occur
• Assume that nominal system is stable
• New loop transfer function: 
• No net encirclements as long as 
• Can rewrite as bound on allowable perturbation

• If condition is satisfied, then sm will never cross to zero 
=> no new net encirclements
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Robust Control Theory

P W1

Δ W2

d z

Δ uncertainty block

W1 performance weight

W2 uncertainty weight

d disturbance signal
z output signal

Goal: guaranteed performance in presence of uncertainty

• Compare energy in disturbances to energy in outputs

• Use frequency weights to change performance/uncertainty descriptions
• “Can I get X level of performance even with Y level of uncertainty?”
• Generalizations to nonlinear systems (along trajectories) available [Tierno et al]

for all

Model components as I/O operators

  y(⋅) = P(u(⋅), d(⋅), w(⋅))

C
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(KF, MHE)
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Online Model
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Stability of Interconnected Systems
Goal: maintain state/outputs relative to neighbors
• “Neighbors” defined by a directed graph
• Assume only sensed data (system outputs) for now
• Assume identical dynamics, identical controllers

Example: hexagon formation
• Maintain fixed relative spacing between left & right neighbors

Theorem (Fax & M, 2004)  The closed loop system is (neutrally) 
stable iff the Nyquist plot of the open loop system does not 
encircle -1/λi(L), where λi(L) are the nonzero eigenvalues of L

• Links topology of graph (via Laplacian) to dynamics of agents
• Can extend to discrete time, MIMO, nonlinear

15
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Summary: Control Theory
Two main principles of (feedback) control theory
• Feedback is a tool to provide robustness to uncertainty

- Uncertainty = noise, disturbances, unmodeled dynamics
- Useful for modularity: consistent behavior of subsystems

• Feedback is a tool to design the dynamics of a system
- Convert unstable systems to stable systems
- Tune the performance of a system to meet specifications

Control theory is (primarily) a design-oriented theory
• Tools were developed to help engineers design control systems
• Analysis tools and fundamental limits can be used for natural systems

More information
• Feedback Systems: http://www.cds.caltech.edu/~murray/FBSwiki
• Optimization-Based Control: http://www.cds.caltech.edu/~murray/FBSwiki/OBC
• Additional references posted on the mini-program wiki

Next
• (option 1) Bio-plausible architectures for insect-inspired control systems
• (option 2) Modern architectures for autonomous systems
• (option 3) Early weekend
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Outline
I. Motivation (and definition of bioplausible + slow computing)
II. Vision-based stabilization using bio-plausible control laws
III. Design of interconnections and time-delays for feedback control
IV. Future directions and next steps
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Card and Dickinson (Caltech)

Straw and Dickson (Caltech)
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Networked Feedback Systems in Biology - Insects

Different architecture than engineering
• Large collection of diverse sensors 

(many more than required)
• Very slow computation with lots of 

parallel pathways
Sean Humbert (Caltech/U. Maryland)

S. Fuller (Caltech)

Humbert, Dickinson & M
CDC05

Stabilization of a goal image/optical flow
• Compute forces and torques based on 

spatial integration of optimal flow

• Integration kernel F encodes controller
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Sawyer Fuller (Caltech), Nov 08

Decoding the Architecture of Insect Flight Control
Fly wind tunnel/flight simulator
• Track flies in real-time, controlling wind 

+ visual environ. (open/closed loop)
• High speed camera with location trigger
• Capture lots of data, then filter

Current focus: gust response
• Sensing systems: vision, halteres 

(~gyros), aristae (antennae)
• How are different sensors integrated?  

Serial, parallel, inner/outer, etc...
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1-page project format: 
Please insert interesting 
images and graphics

Fuller, Peek, Straw, Dickinson & M
(in progress)
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Bootstrappable Design for Visual Pose Stabilization
Approach: minimize image error

• Can write the resulting controller in 
terms of spatial gradients + products

• S can be learned (up to a positive 
definite factor) by watching how the 
environment moves given f, τ

Structure of the resulting controller
• Weights have a sparse structure: 

take positive and negative products 
of nearby sensors

• Controller with delayed y has similar 
structure to Reichardt correlator 
(rough measurement of optic flow)
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J(q) =
1
2
�(y − g)2� =

1
2

�

S2
(y(s) − g(s))2ds

Censi, Han, Fuller, Straw and M
CDC09

Lagged or delayed
y also works
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Controller Implementation

5

Stripe fixation (rotation only):

3D pose stabilization (simulations):

3D pose experiments

Censi, Han, Fuller, Straw and M
CDC09, IROS10 (s)
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Can we design control laws using 
(possibly variable) time delay?
• Easy to obtain in many bio systems
• Idea: combine signals with different 

amounts of delay to get control
• Approach: given G(s), implement 

the impulse response using delay + 
1-2 integrators (or lags)

Control Using Time Delay
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Lavaei, Sojoudi and M
ACC, 2010

Preliminary results

• Can also get bounds on error when delays vary  (possibly useful for jitter?)

Ĝ(s)

Ĝ(s) : ü =
�

αiy(t− τi)
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Summary and Conclusions
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Bioplausible approaches using slow computing
• Look at the opposite extreme to high speed 

computing; what can you do with a few watts...
• Approach #1: highly parallel computation using 

lots of sensors and simple linear + nonlinear 
ops

- Control design via interconnect + nonlinear
- Bootstrap algorithms thru online learning

• Approach #2: control using time delay
- Treat time-delay as programmable element
- Fast compensation becomes trickier...

Next steps:
• Highly agile control of dynamic vehicles using 

slow computing (DGC IV - beat the fly)
• Biomolecular implementations: motion control 

in nanosystems (DGC V - beat the neutrophil)
• Design approaches that exploit data-rich 

environments (learning, evolvability, ...)


	Murray_Brain11_KITP1
	Murray_Brain11_KITP2

