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Disclaimers

• The visual system is taken as a model 
(but it's a good one!)

• I will skip many details to try to paint a 
big picture

• I will emphasize other details because I 
don't often get a chance to do so
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Overview: retina, thalamus, cortex

Schmolesky: http://webvision.med.utah.edu/imageswv/



Retinal Anatomy 101

Kolb,  Fernandez,  Nelson: 
http://webvision.med.utah.edu/imageswv/



Visual Cortex

Van Essen (1992); Schmolesky: http://webvision.med.utah.edu/imageswv/
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Visual Processing is NOT Serial

• Retinal synapses are (nearly) always reciprocal
• Thalamic “relay” neurons receive the retinal 

output BUT 90% of their synapses are not from 
the retina
– feedback from cortex
– non-visual inputs from brainstem

• Cortical areas have a definable hierarchy based 
on laminar pattern of inputs and outputs BUT
– ascending and descending projections are equally 

prominent
– ascending and descending projections are always 

reciprocal

Anatomic evidence



• Lateral interactions within V1 rely on thin 
unmyelinated fibers (slow)  
– (3 mm)/ (0.1 m/sec) = 30 ms

• Lateral interactions between V1 and V2 rely on 
myelinated fibers (fast)
– (20 mm)/(6 m/sec) = 3 ms

• Signal spread between cortical areas is faster 
than within areas

• Perhaps, the processing "unit"  spans multiple 
cortical areas

Visual Processing is NOT Serial

After Bullier

Physiologic evidence
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Framing the Problem

• Stimulus
– light intensity or contrast (L=L0+L1S(x,t))
– current injection

• Response
– intracellular voltage
– transmembrane current
– firing rate
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Framing the Problem, II

• Full probabilistic formulation: study p(R|S(x,t))
• Typical simplification

– For non-spiking neurons: R(t)=F[S(x,t)]+noise
– For spiking neurons: assume an underlying "rate", 

and then a model for generating spikes
• Inhomogeneous Poisson (possibly with refractory period)
• Inhomogeneous renewal

• Ideally, study p(R|S(x,t,λ,behavior)), and do 
this for many neurons at the same time



• Linear

• Nonlinear but analytic (Volterra)

• Orthogonal expansion (Wiener)
• Other forms?

Simplifying the deterministic part: 
some generic models
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Kernel Measurement: Linear System

S(t): injected current
(e.g., pseudorandom 

binary
“m-sequence”)

R(t): intracellular 
voltage 

Since the  spectrum of S(t) is white, cross-correlation of S and R
yields an estimate of impulse response of best-fitting linear system
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• Graded responses to light
– depolarized in dark
– hyperpolarize to light (vertebrates)

• Approximately linear for moderate 
depths of modulation (<30%)

• Linear kernel is separable

• Spatial profile X(x) determined by 
optics, waveguide properties, 
electrical coupling (gap junctions)

Photoreceptors

)()(),( ττ TxXxK =



Photoreceptor Dynamics I

Linear behavior for moderate input range

∫ −= τττ dtSKtR )()()(Assume linearity:

The impulse response          is the response         to        .)(tK )()( ttS δ=)(tR

Response 
scales with 

impulse size
(8-fold range).

Directly measured 
impulse response 

predicts step 
response.

macaque cones
Schnapf et al., 1990scaling superposition



Photoreceptor Dynamics II
Nonlinear behavior (change in dynamics) 

over wide input range

With increasing light level, sensitivity decreases 
and response speed increases.

turtle cones
Daly and Normann, 1985

70000-fold change in 
background intensity, 
1000-fold change in 

flash intensity



• Basic dynamical features similar to 
photoreceptors
– Non-spiking
– Approximately linear

• A functional syncytium
• Spatiotemporal kernel only 

approximately separable, due to 
“cable” (i.e., disk) properties

Horizontal Cells



• Non-spiking
• On-off dichotomy

– Sublaminar organization
– Consequences of Dale’s Law

• Center-surround organization
– Non-separable for light input:

– Consequence: spatiotemporal coupling
• Approximately linear but only for very 

small inputs

Bipolar Cells

)()()()(),( τττ SSCC TxXTxXxK +=



Bipolar Cell Dynamics

salamander
Mao et al., 2002

Impulse response varies with mean input current



• Many (~40) morphological types
• Recurrent connectivity
• Complex dynamics

– Some are highly nonlinear
• On/Off behavior
• Directional selectivity

– Some are spiking

Amacrine Cells



Amacrine Cells: On-Off Responses

Toyoda et al., 1973

Intracellular voltage records of 
responses to abrupt increases and

decreases of illumination

Note depolarizing responses 
at both ON and OFF transients



Kernel Measurement: Nonlinear System

Not clear what kind of input signal will yield the best design 
matrix. e.g., m-sequences have S(t-τ1)S(t-τ2)= S(t-λ(τ1,τ2)).

Estimation of K0, K1, K2, … is also a linear regression.
White noise (Wiener-Lee-Schetzen): If S(t) is drawn from 
Gaussian white noise, design matrix is (eventually) simple, and:
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Amacrine Cells: Second-order Kernel

Sakuranaga and Naka, 1985

first- and second-order 
kernels provide a good 

approximation to response

second-order kernel of catfish 
amacrine cell intracellular voltage 

response  to light

),( 212 ττK



• This is the output of the retina to the 
(rest of the) brain

• Linear center-surround is a caricature
– All ganglion cells show changes in gain 

and dynamics as contrast varies 
("contrast gain control")

– Some ganglion cells are highly nonlinear 
even for small inputs

Retinal Ganglion Cells



Analysis in the Frequency Domain:
Linear System

∫ −= τττ dtSKtR )()()(Assume: single input S(t), and

∫ −= ττω ωτ dKeK i )()(~
Consider the Fourier transforms                                 , etc.
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sums of discrete sinusoids, …

)(~ ωK

Why work in the frequency domain?



Boxes turn into algebra
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Comparison: time vs. frequency domain 
X-type retinal ganglion cell

high spatial frequency grating, S(t) modulates its contrast
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cat
Victor 1979

Note smoothness of kernel in frequency domain.



Comparison: Time vs. Frequency Domain

Y-type retinal ganglion cell, 
S(t) modulates contrast of 

high spatial frequency grating

),( 212 ττK

),(
~

212 ωωK

),( 212 ττK

Victor 1979



Frequency domain kernels can 
have revealing functional forms
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Retinal ganglion cells:
Dynamic adaptation to contrast

Contrast also modulates second-order response, 
primarily via the first filter of F→N→G.

X cell responses to contrast modulation of a grating

step
responses

sum-of-
sinusoids
responses

Shapley and Victor
1980, 1981



Spikes



Retinal ganglion cells:
detailed firing pattern

contrast=0.32 contrast=1.0

"linear" ganglion cell responses to sinusoidal modulation

cat
Reich et al. 1997

At high contrasts, spikes lock to stimulus phase. 
This behavior is consistent with a "noisy leaky 
integrate-and-fire model"



• Each thalamic neuron has a retinal output 
neuron as its primary input

• The retinal neuron's spike is necessary but 
not sufficient for an output event 

Relay neurons of the thalamus (LGN)



Spike Editing by Thalamic Relay Neurons

cat
Kaplan and Shapley 1984

retinal
S-potential,

no LGN spike

retinal
S-potential
followed by
LGN spike



• Most "relay" neuron inputs are not retinal
– From visual cortex
– From brainstem (? arousal)

• Depending on the recent past history, a relay 
neuron's output event can be
– a spike
– no spike
– a burst 

• This is typical of thalamic relay neurons, not 
only visual

Thalamic editing is not just deleting



Firing Modes in LGN Relay Neurons

burst
firing

no firing
tonic 
firing

Voltage response to 
intracellular current 

injections

Bursts rely on a voltage-dependent Ca++ channel. Brainstem 
inputs modulate membrane potential on 100-ms timescale,

appropriate to the activation/inactivation dynamics of the channel.
McCormick 1989



Stretch!



A reasonably satisfying picture

• Processing steps correspond to anatomy
• Goal of processing is clear: redundancy reduction for efficient coding 

to get through the bottleneck of the optic nerve

OR, 

Kolb,  Fernandez,  Nelson: 
http://webvision.med.utah.edu/imageswv/

S RΣ

Xcenter Tcenter

Xsurround Tsurround

L1S RL2|Y|

Boxes are gently 
parametric in input 
mean and variance



Onward to primary visual cortex
• Major differences between retinal and 

cortical anatomy and physiology
– Multilaminated structure, even more cell types
– All neurons spike
– Even "input" layer synapses are mostly intrinsic
– Anatomical and physiological substrate for top-

down influences
• Unlikely that cortical processing has the 

same goals
– No "bottleneck"
– Much redundancy has already been removed

• But current computational models have the 
same computational structure -- LN 
cascades, with tweaks

Adapted from Llinas et al. 1994, by 
Purpura and Schiff 1997



The “New Standard Model” for V1 neurons

adapted from Rust and Movshon, 2005

An LN model with "tweaks" (just as in retina);
selectivity is governed by the initial linear stage



Is something qualitative missing?

• Models are built from neural responses to simple 
stimuli but have only fair predictive accuracy for 
natural scenes
– Because of “top-down” factors: attention?
– Because of low-level factors: high-order correlations

• They distinguish local features (lines, edges) from noise
• They distinguish natural scenes from traditional analytical stimuli

– Unclear whether explaining V1’s computations requires a 
departure from the “new standard” architecture

• We don't have a concise predictive model for the gain controls
• We can't collect enough data to characterize them

• Strategy: Use designed stimuli that neutralize the gain 
controls
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Neutralizing the gain controls

polarCartesian

• All elements have the same mean-squared contrast.
• Within each rank, the two sets have the same spatial extent, frequency 
spectrum, and linear span.

Two-dimensional Hermite 
functions

Strategy:  build LN-type models from neural responses to each 
set.  The inferred filters should match. If not, then we cannot 
blame some special property of natural scenes, or the effect of 
gain controls.



Cartesian

polar

c3003s

200 imp/s

250 ms

Responses of a typical V1 
neuron

layer 3, non-
directional, broad 
orientation tuning



Fitting an LN-type 
model to the 
responses

Testing the model

I

L

E

Σ

|Y|

R

sensitivity of toL =
-resp[ ] resp[ ]

2

+
sensitivity of toE =

resp[ ] resp[ ]

2
"New Standard Model prediction:
Cartesian and polar stimuli yield the same filters



layer 3, non-directional 
simple cell, broad 
orientation tuning
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L E
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First cell

Prediction holds: filters determined from C and P are similar



layer 3, non-
directional, narrow 
orientation tuning

Cartesian

polar

c3003u

100 imp/s

250 ms

Responses of another typical 
cortical neuron



layer 3, non-directional 
complex cell, narrow 

orientation tuning

c3003u
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Second cell

Prediction fails: filters determined from C and P differ in shape



Cartesian

polar

c3301t

50 imp/s

250 ms

A third neuron

upper layer 6, 
directionally-selective 

complex cell



upper layer 6, 
directionally selective 

complex cell

c3301t
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Third cell

Prediction fails: filters determined from C and P differ in size



Population summary, and relationship to 
laminar organization

• 41/70 neurons: prediction 
fails, filters differ in shape

• 32/70 neurons: prediction 
fails, filters differ in size

• 17/70 neurons: prediction 
holds (neither difference)

N=70

Prediction failure is typical in all layers, even in layer 4 (input)

Laminar analysis, V1

layer 4

upper

lower

N=33

N=20

N=17

N=41

V2



Contour orientation is key
The apparent change in the filters is a signature of departure 
from LN behavior.  What stimulus characteristics are driving it?

Changing contour orientation has a 
larger effect than removing them.

Cartesian, aligned to 
preferred orientation polar

r=0.76

Cartesian, oblique to 
preferred orientation

r=0.76

r=0.49



Summary so far
• Most V1 neurons show qualitative departures from the 

predictions of cascade models
– for simple non-natural stimuli 
– that neutralize the gain controls
– even in the input layers

• The presence of oriented contours drives this departure

• Since orientation selectivity first appears in V1, this 
suggests recurrent nonlinear processing

• But is this finding specific to these peculiar matched 
basis sets? Can we more directly test the idea that high-
order correlations matter?



trial 1
trial 2

Cross-correlate the spike trains with the 
stimulus, pixel by pixel, to generate a 
receptive field sensitivity profile.

Variation on a familiar theme
mapping with random binary stimuli

This works if the stimulus pixels are uncorrelated in pairs.

We can create stimuli in which pixels are uncorrelated in 
pairs, but correlated at higher orders -- and use them to 
study whether V1 neurons care about these correlations.



Implementing the idea
• No pairwise correlations
• Strong fourth-order correlation: 
every "glider" has an even 
number of white checks

other glider shapes and parities

Each texture is a probe for neural sensitivity 
to a specific kind of high-order correlation.



random even odd
bright 

triangle
dark 

triangle
repeat 
random

Mapping V1 neurons with correlated stimuli
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Large changes in sensitivity profiles; some neurons only "mappable" with correlated stimuli

But maybe we 
could build 
dedicated, 
parallel 
combinations of 
LN models to 
recover this 
behavior.



"Invisible" correlations can affect the map
random even odd

bright 
triangle

dark 
triangle

repeat 
randomwye
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Principal components analysis of RF maps

random
even
odd
bright triangle
dark triangle
wye

+pc1-pc1

-pc2

+pc2

Error bars: 95% 
confidence limits. 

even oddrandom
bright 

triangle
dark 

triangle wye

+pc1
-pc1

-pc2

+pc2

even oddrandom
bright 

triangle
dark 

triangle wye

RF changes are highly significant, including changes 
induced by "invisible" correlations (the wye stimulus).



L1

N1

input

L2

N2 L3

N3

L4

N4
L5

N5

… …

Recurrence makes it sensible
• With feedforward architecture

– We would have to build a parallel set of LN modules, with 
dedicated circuitry for each kind of correlation

– We would have to include circuitry for correlations that aren't 
perceptible (and don't seem to correspond to edges and 
regions)

• But what if the recurrence dominates?
• Each path through the network 

traverses a different combination of 
nonlinearities

• This generates lots of useful 
combinations (e.g., local edge 
detection followed by interactions 
along extended contours)

• But it also generates some crosstalk 
-- accounting for sensitivity to 
"invisible" correlations

• And it meshes well with anatomy



What is a “natural scene”?

“I know it when I see it”.

Potter Stewart, Jacobellis v. Ohio (1964)



What is the goal of the computations 
in primary visual cortex?

Lab meeting, April 2011


