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Introduction
Almost 200,000 cases of invasive breast cancer are diag-
nosed each year in the United States, and of these, over 
40,000 women die each year from this disease.1 It is well 
established that breast cancer is not a single disease but con-
sists of several types with distinct clinical behaviors and 
treatment approaches. Approximately 60% to 70% of tumors 
express the estrogen receptor (ER) and are treated by drugs 
targeting the estrogen signaling pathway.2,3 Approximately 
20% to 30% have amplification of the human epidermal 
growth factor receptor-2 (HER2+) and are treated with Her-
ceptin (Genentech Inc., South San Francisco, CA) and other 
agents that target the HER2 transmembrane receptor tyrosine 
kinase.4 However, there remains significant heterogeneity in 
both natural history and treatment response in tumors with 
similar clinical classification.2-4

Gene expression analyses have provided insight into this 
clinical heterogeneity. Supervised learning methods applied 
to gene expression data have identified gene panels predic-
tive of risk that are currently being applied to clinical prac-
tice.5,6 Unsupervised clustering of gene expression data7,8 
has identified further stratification of breast cancer into sub-
types with distinct gene expression profiles correlated with 
recurrence risk and survival. These studies divide breast 
cancers into luminal A (ER+ with good prognosis), luminal 
B (ER+ with poor prognosis), HER2+ (HER2+, ER−), and 
basal-like (HER2−, ER−). These subtypes have been vali-
dated in several subsequent studies.9,10

Basal-like breast cancers (BLC) are high-grade, invasive 
cancers that are characterized by the “triple-negative” phe-
notype (ER−/PR−/HER2−), lacking expression of the estro-
gen receptor (ER), progesterone receptor (PR), and HER2. 
BLC account for approximately 15% of human breast can-
cers, tend to occur in younger women, and account for a 
disproportionate amount of breast cancer deaths.11 As BLC 
do not respond to either hormonal treatment or HER2- 
targeted treatment, there are at present no targeted therapies 
for this aggressive cancer. The goal of our work is to try to 
identify specific therapeutic targets for triple-negative 
breast tumors. Towards this end, we hypothesized that good 
targets should be highly expressed proteins that are “impor-
tant” for the survival of the tumor cell, meaning that down-
regulation of the associated gene would lead to a significant 
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Abstract
Normal cellular behavior can be described as a complex, regulated network of interaction between genes and proteins. Targeted cancer therapies aim 
to neutralize specific proteins that are necessary for the cancer cell to remain viable in vivo. Ideally, the proteins targeted should be such that their 
downregulation has a major impact on the survival/fitness of the tumor cells and, at the same time, has a smaller effect on normal cells. It is difficult 
to use standard analysis methods on gene or protein expression levels to identify these targets because the level thresholds for tumorigenic behavior 
are different for different genes/proteins. We have developed a novel methodology to identify therapeutic targets by using a new paradigm called “gene 
centrality.” The main idea is that, in addition to being overexpressed, good therapeutic targets should have a high degree of connectivity in the tumor 
network because one expects that suppression of its expression would affect many other genes. We propose a mathematical quantity called “centrality,” 
which measures the degree of connectivity of genes in a network in which each edge is weighted by the expression level of the target gene. Using our 
method, we found that several SRC proto-oncogenes LYN, YES1, HCK, FYN, and LCK have high centrality in identifiable subsets of basal-like and HER2+ 
breast cancers. To experimentally validate the clinical value of this finding, we evaluated the effect of YES1 knockdown in basal-like breast cancer cell lines 
that overexpress this gene. We found that YES1 downregulation has a significant effect on the survival of these cell lines. Our results identify YES1 as a 
target for therapeutics in a subset of basal-like breast cancers.
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impact on the fitness of the cancer cells. Intuitively, the 
expression levels of such important genes should be corre-
lated with a large number of other genes across subsets of 
samples. In effect, these genes are hubs (high-degree nodes) 
in the associated gene network. Simulations performed on 
synthetic gene networks12 have shown that knocking out a 
highly connected gene (a gene linked to many other genes) 
has a greater impact on fitness compared to knocking out a 
gene with fewer connections, and this effect is even stron-
ger for genes with high expression values.

Using these ideas, we have developed a new method for 
identifying therapeutic targets in different cancer types 
from gene expression data. In our method, the usual mea-
surements of differential expression are replaced by a new 
paradigm called “gene centrality.” The identification of a 
target gene as one with high centrality is based on our 
expectation that in addition to being overexpressed, good 
therapeutic targets must have a high connectivity degree in 
the tumor gene network. We identify such genes by com-
puting the eigenvector associated with the largest eigen-
value of a modified gene connectivity network matrix in 
which each edge is weighted by the overexpression level of 
the target gene. Genes with high centrality are identified as 
those with high coefficients in the eigenvectors with the 
highest eigenvalues, which represent the majority of varia-
tion in the data. We expect such genes to be better therapeu-
tic targets because their modification affects a number of 
other “important” genes.

We applied this method to published breast cancer gene 
expression datasets. Classification of tumors into luminal, 
HER2+, and basal-like breast cancer subtypes was per-
formed using consensus clustering and centroid-based clas-
sification as described in Alexe et al.13 Genes with high 
centrality scores for each subtype were identified using the 
network analysis as described above. This led to the identi-
fication of a number of SRC tyrosine kinases (LYN, YES1, 
HCK, FYN, and LCK) with high centrality scores in sub-
sets of basal-like breast cancers and in HER2+ tumors. In 
this article, we focus our analysis on the YES1 kinase, 
which we found to be associated with the basal-like sub-
types. The importance of YES1 as a potential therapeutic 
target was verified via a growth/survival assay by stably 
suppressing the expression of YES1 in several breast cancer 
cell lines. We showed that downregulation of YES1 had a 
significant effect on the fitness of the cancer cells. This 
analysis suggests that several current drugs, including SRC 
inhibitors, may be successfully used to treat a molecularly 
identifiable subset of basal-like breast cancer patients.

Results
Gene expression datasets. We analyzed gene expression 

data from Wang et al.,14 consisting of 286 early-stage, 

lymph node–negative breast tumor samples from patients 
treated with surgery and radiation but no adjuvant or neoad-
juvant systemic therapy. Robust, unsupervised consensus 
clustering previously applied to this dataset has identified 6 
core breast cancer subtypes,13,15,16 2 within each clinical 
subtype: luminal (ER+) cases split into 28 luminal A (LA) 
and 104 luminal B (LB) samples, HER2+ (HER2+/ER−) 
cases split into 14 HER2I and 17 HER2NI, while basal-like 
(ER−/HER2) cases split into 15 BA1 and 22 BA2 samples. 
LA and LB tumors are both ER+ and PR+, with the main 
difference between them being that LB cases had a signifi-
cantly higher recurrence rate. Compared to BA2, the basal-
like subtype BA1 was characterized by overexpression of 
genes associated with the innate immune/defense response 
pathway (for details, see Alexe et al.13). The relationship of 
BA1 and BA2 subclasses of BLC to the “claudin-low” sub-
set of triple-negative breast cancers recently described 
using the “intrinsic gene set” is not clear.40 HER2I and 
HER2NI breast cancers both have amplification of the 
ERBB2 (HER2) gene. However, the HER2I subtype is dis-
tinguished from HER2NI by a strong upregulation of  
lymphocyte-associated genes and an infiltration of lympho-
cytes into the tumor, which is easily seen on pathological 
examination of FFPE slides.13 Moreover, HER2I patients 
have a significantly lower recurrence rate compared to 
HER2NI tumors in the absence of adjuvant therapy.13

In addition, we also analyzed another gene expression 
dataset from Ivshina et al.,17 consisting of 249 samples 
from primary invasive breast tumors. Samples were classi-
fied into subtypes using the core clusters already identified 
in the Wang et al.14 dataset, by comparing gene expression 
values for each sample to mean expression values calcu-
lated for each of the original core clusters. Centroids for 
each subtype were identified using normalized gene expres-
sion values as described in Alexe et al.,13 and distances 
from the centroids to samples from the new dataset were 
calculated using several metrics (such as Pearson correla-
tion and Euclidean distance). For each distance metric used, 
the new samples were assigned to the subtype whose cen-
troid they were closest to. Samples that did not consistently 
classify with the same subtype for all distance measures 
were discarded. We thus identified 78 LA, 96 LB, 12 
HER2I, 24 HER2NI, 11 BA1, and 13 BA2 tumors in the 
Ivshina et al. dataset.17

Both gene expression datasets were downloaded from 
the Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.
gov/geo) database. Accession identifiers GSE2034 and 
GSE4992 correspond to the first and second dataset, respec-
tively. Table 1 summarizes the clinical and pathological 
characteristics of all patients used in the study. The main 
difference between the 2 datasets is in the distribution of 
lymph node (LN) status and histological grade. However, 
this does not adversely affect our analysis because it 
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depends mostly on the subtype assignment, which is unam-
biguous (Table 1).

High centrality score genes in robust breast cancer sub-
classes. The gene expression data were used to compute out-
lier scores (θ) and Pearson correlation values (r) for each 
gene across all samples. Centrality scores were then com-
puted as described in the Materials and Methods section to 
identify oncogenes with high centrality scores in each 
breast cancer subtype. As seen in Table 2, our method suc-
cessfully identified ERBB2 in HER2+ (HER2I, HER2NI) 
subtypes and ESR1 for luminal subtypes (LA, LB) as high 
centrality genes that are potential therapeutic targets. Most 
strikingly, our methods found a set of related SRC protein 
kinases LYN, YES1, HCK, FYN, and LCK with high cen-
trality scores in the BA1 subset of basal-like breast cancer. 
In addition, all these kinases except YES1 also have high 
centrality scores in the HER2I subset of HER2+ breast can-
cers. Our analysis therefore suggests that these specific 

kinases are all potential therapeutic targets for patients in 
these specific subtypes of breast cancer.

In luminal A cancers (mostly low-grade ER+ breast can-
cers), in addition to the estrogen receptor-alpha (ESR1), 
genes with high centrality scores included ERG, ETS2, and 
ELK3 that belong to the ETS family of transcription fac-
tors, TGFBR2, and the tyrosine kinase FOS. In luminal B 
cancers, EGFR had high centrality scores.

YES1 in basal-like breast cancers. To test whether central-
ity scores can successfully identify novel therapeutic tar-
gets in basal-like, we focused on the YES1 (Yamaguchi 
sarcoma viral oncogene homolog 1) gene. This gene is 
known to be also overexpressed in colorectal, head and 
neck, renal, lung, and stomach cancers.18 Figure 1A and 1B 
show the normalized expression values of YES1 across all 
subtypes for the 2 datasets. To avoid sampling bias (due to 
an unequal number of samples in the subtypes), we used the 
following procedure: 10 samples were chosen from each 

Table 1.  Microarray Datasets Used in This Study

GEO Acc.
No. of  

Samples
Grade Ratio 

(1/2/3)
LN Status 
Ratio (+/−)

ER Status 
Ratio (+/−)

Luminal Class 
Ratio (LA/LB)

HER2+ Class Ratio 
(HER2I/HER2NI)

Basal-Like Class 
Ratio (BA1/BA2)

GSE2034 286 7/42/148 0/286 209/77 28/104 14/17 15/22
GSE4922 249 68/126/55 81/159 211/34 77/96 12/24 11/13

Note: Clinical and pathological characteristics of all patients, as well as clustering and classification results. Unknown values are not counted.

Table 2. Top Centrality Results for Cancer Genes

BA1 BA2 HER2I HER2NI LA LB

Gene Centrality
Outlier 
Score Centrality

Outlier 
Score Centrality

Outlier 
Score Centrality

Outlier 
Score Centrality

Outlier 
Score Centrality

Outlier 
Score

LYN 4.35 80% 1.89 38% 3.32 29% 0.21 5% 0.00 0% 0.00 0%
YES1 3.66 70% 1.84 52% 0.00 0% 1.22 24% 0.00 0% 0.23 6%
HCK 3.85 63% 0.38 10% 4.38 47% 0.21 6% 0.57 6% 0.33 8%
FYN 2.42 41% 0.94 32% 7.60 55% 0.37 7% 1.65 13% 0.44 8%
LCK 3.08 52% 0.50 15% 12.01 88% 0.00 0% 0.93 10% 0.41 8%
PIM2 4.12 65% 0.29 10% 5.88 79% 0.00 0% 0.61 9% 0.43 13%
ERBB2 0.00 0% 0.00 0% 6.51 100% 4.51 100% 0.01 0% 0.05 2%
TGFBR2 0.04 1% 0.71 9% 3.32 41% 0.76 12% 13.61 66% 0.46 9%
ERG 0.00 0% 0.71 11% 1.72 21% 2.04 31% 10.57 65% 1.21 26%
ELK3 0.71 13% 1.14 18% 1.16 15% 1.36 23% 6.50 50% 0.72 16%
FOS 0.00 0% 0.10 2% 1.50 28% 0.94 20% 5.76 76% 0.77 34%
ETS2 0.47 11% 1.60 33% 2.39 27% 0.70 19% 5.92 34% 0.50 11%
ESR1 0.00 0% 0.00 0% 0.78 13% 1.54 26% 6.94 69% 3.44 82%
EGFR 0.77 11% 2.36 38% 1.24 18% 1.38 25% 1.57 19% 4.99 40%

Note: Top gene centralities alongside metaoutlier scores are listed for oncogenes across all breast cancer subtypes. High centrality scores are  
italicized.
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subtype, the expression value of YES1 was standard nor-
malized across these 60 samples, and the normalized value 
of each sample in this bootstrap dataset was noted. This 
procedure was repeated 1,000 times. The average expres-
sion value of YES1 for each sample across these boot-
strapped datasets was calculated, keeping track of how 
often the sample appeared in the bootstrap samplings. 
Figure 1A and 1B shows the sorted values of YES1 for all 
samples in each subtype thus obtained for the 2 datasets. 
The relative overexpression of YES1 in the basal-like sub-
types is obvious from Figure 1A and 1B. We note that YES1 
is also relatively overexpressed in HER2-NI. The centrality 
score of YES1 in HER2-NI was >1 and was higher than all 
other related SRC kinases but still fell below the threshold 
of centrality set for the whole dataset.

To further validate YES1 overexpression in a subset of 
basal-like breast cancers, we analyzed FFPE slides from 13 
ER−/PR−/HER2−, high-grade breast cancers with an inva-
sive ductal morphology. No gene expression data were 

available for these clinical samples. Although BLC can 
only be formally identified by gene expression profiling, 
published data have demonstrated that >85% of high-grade 
ER−/PR−/HER2− breast cancers with invasive ductal mor-
phology will fall into the BLC category by gene expression 
profiling.41 Thus, we expect this cohort of 13 triple-
negative breast cancers to consist mostly of BLC. Tissue 
slides were obtained under an IRB-approved protocol from 
the Tumor Bank at the Cancer Institute of New Jersey. 
Immunohistochemical analysis of the slides was performed 
using a YES1-specific antibody and scored as described in 
the Materials and Methods section.Figure 1C, 1D, and 1E 
show staining of the samples identified as having high, 
medium, or low/no expression of YES1, respectively. Of 
the 13 samples, 2 showed high levels of YES1, 6 had 
medium expression, and 5 had low/no expression. These 
data demonstrate that a subset of triple-negative breast can-
cers has high expression of YES1 and support the hypoth-
esis that YES1 is overexpressed in a subset of BLC.
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Figure 1. YES1 is overexpressed in a subset of basal-like breast tumors. Bar plots showing relative overexpression of YES1 in a subset of basal-like breast 
tumors in the GSE2034 (A) and GSE4922 (B) gene expression datasets. To confirm this, 13 ER−/PR−/HER2− paraffin-embedded breast cancer tissue slides 
were probed for expression of YES1 by immunohistochemistry with an appropriate YES1-specific antibody. Of the 13 samples, 2 had high expression levels 
of YES1, 6 had medium expression, and 5 had low or no expression. Shown are examples of the staining protocol on slides showing high (C), medium (D), 
and low/zero (E) expression of YES1 in cancer cells on the slides.
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Validating YES1 as a therapeutic target in a subset of basal-
like breast cancers. The analysis described above supports 
the hypothesis that YES1 is overexpressed in a subset of 
basal-like breast cancers and hence is a possible therapeutic 
target. We tested this hypothesis by determining whether 
suppressing YES1 expression in subsets of breast cancer 
cell lines has a significant effect on cell survival/growth. 
Lentiviral vectors expressing YES1-specific shRNA were 
constructed to stably suppress the expression of YES1 in 
breast cancer cell lines: MDA468, MDA231, BT549, 
MCF10A, SKBR3, and MCF7. Of these, MDA468, 
MDA231, BT549, and MCF10A are all basal-like; that is, 
they are negative for expression of estrogen, progesterone, 
and HER2 proteins (ER−/PR−/HER2−) and have been 
shown to profile as “basal-like” by gene expression analy-
sis.42 SKBR3 is ER−/PR− but HER2+, while MCF7 is ER+/
PR+ and consistent with the luminal breast cancer type. 
Three different shRNA were chosen, and their ability to 
suppress the expression of YES1 was tested on MDA468. 
Only the most efficient one (shYES1#2) was selected for 
subsequent experiments. Equal numbers of cells from each 
cell line were infected with either a lentivirus-encoding 
shYES1 or a control-scrambled shRNA. After 6 days, all 
cells were counted and the results compared to the controls 
to assess whether the growth rate of cancer cells was 
affected by silencing YES1. We found (Fig. 2A, 2B, and 
2D) that all cell lines except the luminal cell line MCF7 had 
a significant reduction of cell counts when treated with 
shYES1#2 compared to the controls. Two additional shR-
NAs that were less efficient in knocking down YES1 pro-
tein levels (shYES1#1 and shYES1#3) could also decrease 
cell growth in this assay, although not as efficiently as 
shYES1#2, demonstrating the effect on growth is not likely 
an off-target effect of shYES1#2 (Fig. 2C).

Discussion
In this article, we have developed and applied a novel 
method for analyzing gene expression data that takes into 
account not only the levels of expression for different genes 
but also a measure of similarity between pairs of genes 
across subsets of samples in subtypes. We have introduced 
a novel analytical measure called “gene centrality,” which 
identifies potential therapeutic targets in subsets of cancer 
patients. The algorithm implemented here, based on outlier 
scores and correlations, is general and can be modified for 
the analysis of any cancer. It can also be extended using dif-
ferent measures of expression, as long as they are positive, 
and other normalization schemes (such as the soft-max nor-
malization procedure described in Han and Kamber19). 
Other estimations of correlation, such as the Spearman rank 
correlation,20 Kendall tau rank correlation,21 or Mutual 
Information,22 can also be used in place of the Pearson cor-
relation used here and give similar results.

This method successfully identified known therapeutic 
targets ERBB2 (HER2) and ESR1 in ER+ and HER2+ sub-
types of breast cancer. These genes are already successfully 
targeted by hormonal therapy by compounds such as Her-
ceptin (Genentech Inc.) for HER2+ or tamoxifen for lumi-
nal subtypes of breast cancers, respectively. Interestingly, it 
is known that tamoxifen treatment is less successful in the 
luminal B (LB) subtype compared to luminal A (LA).8 Our 
gene centrality score suggests a possible explanation: the 
centrality score of ESR1 is 6.94 in LA and only 3.44 in LB, 
although ESR1 is equally overexpressed in both. This sug-
gests that the reason tamoxifen does not work as well in LB 
as in LA may be that in LB, the tumor is not as dependent 
on ESR1 as in LA. In other words, the number of other 
genes affected by ESR1 in LB is much smaller than in LA, 
and hence, it is less susceptible to drugs like tamoxifen that 
function by blocking the estrogen pathway.

The therapeutic targets associated with breast cancer 
subtypes in Table 2 are either novel or currently part of 
clinical trials. Epidermal growth factor receptor EGFR was 
identified as having high centrality in high-risk ER+ tumors 
(luminal B), and our data would suggest that EGFR inhibi-
tors should be targeted specifically at luminal B breast can-
cers. TGF-beta receptor 2 has very high centrality in luminal 
A tumors, suggesting that these tumors may benefit from 
TGF-beta inhibitors. Intriguingly, the ETS-related genes 
ERG (and ELK3 and ETS2) all had high centrality scores in 
luminal A tumors. ERG has been shown to be involved in 
translocations in a significant proportion of prostate can-
cer,23,24 another hormone-sensitive solid tumor. Our data 
would suggest that ERG abnormalities may be present in 
the luminal A subclass of breast cancers as well.

PIM2 and a number of SRC tyrosine kinases including 
YES1 and LYN were predicted to be good therapeutic tar-
gets in subsets of basal-like and/or HER2+ breast tumors. 
LYN has recently been shown to be overexpressed in sub-
sets of basal-like breast cancer and required for cell migra-
tion and invasion, but not for proliferation, in basal-like 
breast cancer cell lines.25 The analysis from the present 
article suggests that YES1 is also a therapeutic target in 
basal-like breast cancer cell lines. Note that the SKBR3 cell 
line that profiles as “basal” in some studies but has HER2 
amplification42 was also sensitive to knockdown of YES1. 
These data suggest that, in addition to a subset of BLC, 
YES1 may also be a target in some HER2+ tumors. It also 
suggests that the thresholds we used for centrality scores 
may be too conservative and that genes with more modest 
elevations in centrality scores may also be therapeutic tar-
gets. Our study combined with Choi et al.’s25 suggests that 
overexpression of YES1 and LYN could be used to  
guide treatments with SRC kinase inhibitors like Dasatinib 
(Bristol-Myers Squibb, New York, NY), AP 23846 (Ariad, 
Cambridge, MA), TG 100598 (TargeGen, San Diego, CA), 
AZD 0539 (AstraZeneca, London, UK), or SKI-606 
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(Wyeth, Madison, NJ). Dasatinib (Bristol-Myers Squibb) is 
a drug that inhibits the BCR/ABL pathway in addition to 
SCR kinases and has been shown to slow the growth of  
triple-negative (ER−/PR−/HER2−) breast cancer cell lines 
in vitro.26,27 It is unclear whether this effect is due to the 

inhibition of BCR/ABL or any of the SRC kinases, but 
based on centrality scores and subsequent experiments, 
YES1 and LYN may be at least partially responsible for the 
phenotypic changes observed upon Dasatinib (Bristol-
Myers Squibb) treatment.

Figure 2. YES1 knockdown impairs the growth of breast cancer cell lines. A series of 6 breast cancer cell lines were infected with lentiviral constructs 
designed to suppress expression of YES1 with hairpin shRNA. Equal numbers of these cells were plated in triplicates alongside controls and then counted 
after 6 days. (A) Images of cells after 6 days’ growth in 12-well plates with and without YES1 knockdown in various cell lines. All cell lines except MCF7 are 
ER−/PR− and therefore “basal-like.” (B) Western blot of 3 of the cell lines showing the efficacy of YES1 expression knockdown. On MDA468, 3 different 
shRNA were used with different efficiencies. The best one was shYES1#2, which was used further on the rest of the cell lines. (C) Average cell counts 
normalized to control in MDA468 show that knockdown of YES1 impairs the growth and survival of this basal-like breast cancer cell line. To control for 
off-target effects, 3 different shRNA constructs were used, and all show reduced survival. (D) The most efficient lentiviral construct shYES1#2 was used 
on the other breast cancer cell lines. Knockdown of YES1 showed a significant effect on basal-like cell lines and no effect on the luminal-like cell line MCF7. 
All experiments were performed more than once and showed similar results.



YES1 is a therapeutic target in basal-like breast cancers / Bilal et al.	 1069

Materials and Methods

Datasets and preprocessing. Previously published breast 
cancer microarray datasets (accession numbers GSE203414 
and GSE492217) were obtained from the Gene Expression 
Omnibus website (GEO; www.ncbi.nlm.nih.gov/geo). The 
first dataset (GSE2034) comes from a study of Wang et al.14 
and consists of gene expression data from 286 lymph node–
negative patients treated with surgery and radiation alone 
and followed for up to 150 months after treatment, with 
recorded events for distant metastasis (Suppl. Table S1). ER 
status was available, and HER2 status was known but not 
provided. The second dataset (GSE4922) from Ivshina 
et al.17 consisted of 249 primary invasive breast tumors 
(Suppl. Table S2). In this cohort, 64% of patients were 
lymph node negative and were treated with surgery and 
radiation alone. The remaining set was lymph node positive 
and received systemic adjuvant polychemotherapy consist-
ing of intravenous cyclophosphamide, methotrexate, and 
5-fluorouracil.28 Histological grade, tumor size, ER, and 
P53 biomarker information were available for each sample 
together with up to 153 months of follow-up information 
for distant metastasis.

Microarrays were MAS 5.0 normalized, and only probes 
present in both datasets were retained. Multiple probes cor-
responding to the same gene were compressed to the one 
with the biggest median over all arrays after taking log

2
 of 

each intensity value. In addition, every array was scaled to 
median zero by subtracting the median of each array from 
every expression value.

Robust, unsupervised consensus ensemble clustering 
methods previously applied to GSE2034 identified 6 core 
breast cancer subtypes13,15,16 as listed in Supplementary 
Table S1: 2 ER+/HER2− subtypes: luminal A (LA) and 
luminal B (LB); 2 basal (ER−/HER2−) subtypes: BA1 and 
BA2; and 2 HER2+ subtypes: HER2I and HER2NI. The 
samples in GSE4922 were assigned a subtype as follows: 
HER2+ samples were identified based on 17q12 amplifica-
tion using expression levels of ERBB2, GRB7, STARD3, 
and PPARBP. Gene expression values in both datasets were 
normalized by subtracting the median and dividing by the 
median absolute deviation. HER2+ samples were identified 
as those overexpressing ERBB2 and at least 2 others from 
the set GERB7, STARD3, and PPARBP. After HER2 sam-
ples were identified, the 2 datasets were merged using a 
method called Distance Weighted Discrimination (DWD),29 
which corrects for biases arising from different experimen-
tal conditions. The assignment of samples in Dalgin et al.’s 
study15 to subtypes was done by comparison to mean 
expression profiles (centroids) across all genes for each 
subtype, using the classification of GSE2034 as the stan-
dard. This method, called Single Sample Predictor,9 calcu-
lates a “distance” from each sample to mean expression 

values of samples in labeled sets using Euclidean distance 
or Pearson correlation and assigns them to the set for which 
this distance is minimum (Suppl. Table S2). Cases with 
inconsistent class labels for different distance metrics were 
discarded.

Meta-analysis of outliers. To minimize sample size bias, 
10 arrays were randomly picked from each breast cancer 
subtype and combined into a reduced gene expression  
table, G = [g

ij
]

nx60
, where n is the total number of genes 

in each array. For each gene, the expression values  
were median centered and then divided by the median abso-
lute deviation (MAD) as described in Tomlins et al.30: 

′ =
−

g
g median g

MAD gij

ij i

i

( )

( )
. Median and MAD were used here instead of 

the usual mean and standard deviation because they are less 
influenced by the presence of outliers. Outlier scores (θ) 
were defined for each gene and class as the percentage of 
high outlier values across each breast cancer subtype: 

θ = ∑1

N jj

N
∆ , where N = 10, Δ

j
 = 1 if g′

j
 > 1, and Δ

j
 = 0 

otherwise.

The sampling procedure was repeated 1,000 times, sepa-
rately for the 2 datasets (GSE2034 and GSE4922), and in 
each sampling, outlier scores were generated for each gene 
in each subtype. At the end of this analysis, every gene had 
2 associated distributions of outlier scores for each subtype 
that could now be combined into a single consensus score. 
This metaoutlier score was calculated, using the method of 
Cochran,31 as a weighted mean of the average outlier scores 
from the 2 distributions (θ

–

1
 and θ

–

2
), where the weights were 

the inverse of corresponding variances σ
k

2:

              θ = w w wk k
k kk k kθ

_

, /
2 2 21∑ ∑ = σ

            
                 (2.1)

Each gene was now assigned a metaoutlier score for each 
of the 6 breast cancer classes (BA1, BA2, HER2I, HER2NI, 
LA, and LB), which estimates whether it is relatively over-
expressed or underexpressed with respect to other subtypes.

Meta-analysis of correlations. Pearson correlations were 
computed between all pairs of genes within each subtype. 
Assuming a common underlying population correlation 
between every 2 genes in each class, we calculated  
metacorrelation values by first transforming each Pearson 

correlation r with a Fisher z transform: z
r

r
=

+
−

1

2

1

1
ln . The method

usually used to estimate a common correlation value across 
multiple datasets32 is to calculate the weighted average,

	 Z = w z wk kk kk

2 2∑ ∑  	 (2.2)

where z
1
 and z

2
 are z-transformed Pearson correlations 

between any 2 genes from datasets GSE2034 and GSE4922, 
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respectively. The weights are w
k
 = n

k
 − 3, where n

1
 and n

2
 

are numbers of samples used to calculate correlations in the 
2 datasets. Since correlation values calculated from gene 
expression arrays are often noisy,33 a homogeneity χ2 statis-
tic, Q n z zk kk

= − −∑ ( )( )^3 22

, was used to reject inconsistent cor-
relation values. This statistic is χ2 distributed32 with K − 1 is 
the number of degrees of freedom, where K = 2 is the total 
number of studies. Based on this statistic, the degree of 
inconsistencies can be measured as I2 = 100% × (Q – df)/Q, 
where df = K − 1 is the number of degrees of freedom. The 
measure I2 describes the percentage of total variation due to 
actual heterogeneity (signal) rather than due to chance.34

Metacorrelation values were calculated using the inverse

Fisher z transform: r
z

z

^
^

^

exp( )

exp( )
=

−

+

2 1

2 1
, and the ones for which 

I2 > 50% were discarded. This ensures that more than 50% 
of the observed variations were due to true heterogeneity.

Gene centrality. Eigenvector centrality35,36 is a measure of 
the importance of a node in a network. Relative scores are 
assigned to each node based on the idea that connections to 
nodes with high scores should contribute more to the score 
of the node in question than equal connections to low scor-
ing nodes. Similarly, gene centrality is a measure of the 
importance of a gene in a modified gene network, where 

directed edges between nodes (genes) 
are weighted by a positive measure of 
the overexpression of the target gene 
as shown in the toy gene network 
from Figure 3. More generally, con-
nections between nodes can be real 
positive numbers representing con-
nection strengths.

Let A = [a
ij
]

nxn
 be an adjacency 

matrix, where every element, a
ij
 = r2

ij 
, 

is the square of the metacorrelations 
between all genes within a subtype. 
(For a more detailed explanation of 
the material here, refer to Seneta37 
and Hedges and Olkin32). This is the 
inverse of z from equation 2.2 and 
measures how much of the variance 
in the expression of gene g

i
 can be 

explained by gene g
j
. It provides an 

intuitive measure of the “connection” 
strength between the 2 genes. Let s

i
 

be the centrality of gene g
i
 with asso-

ciated metaoutlier score θ
i
 as 

described in equation 2.1. Then, the 
centrality of gene g

i
 is proportional to 

the sum of scores of all genes modu-
lated by the “connection” strength 
with each one of them and also pro-
portional to its own measure of 

overexpression:

                                     
s a si i ij jj

n
= ∑1

λ
θ
^

                                           (2.3)

Here, λ is a constant of proportionality to be deter-
mined. Let Θ = diag(θ1

, θ2
,… θn) be the diagonal matrix 

with metaoutlier scores of all genes on the main diagonal 
and s = [s

i
]

nx1
 be a column vector of all gene centrality 

scores; then, the previous equation 2.3 can be rewritten as 
an eigenvector problem:

                                       ΘAs = λs	 (2.4)

Equation 2.4 identifies λ as an eigenvalue of the prod-
uct of matrices Θ and A. In general, there will be many 
different eigenvalues λ for which an eigenvector solution s 
exists, and they describe the behavior of the discrete linear 
dynamical system:

                                   x
m+1

 = ΘAx
m
	 (2.5)

where
              x

m
 = c

1
λ

1

ms
1
 + c

2
λ

2

ms
2 
+…+ c

n
λ

n

ms
n
	 (2.6)

g1
g3

g1
g3

g2

g4

g2

g4

Figure 3. The gene centrality principle. Cartoon showing a toy gene network, with relative 
expression levels g

i
 proportional to node size, transformed into a similar network with a primitive 

adjacency matrix. This is accomplished by eliminated unconnected genes and by adding self-loops 
to all nodes. In addition, undirected edges are changed into directed edges with associated weights 
equal to the expression level of the target gene. In this configuration, the center node (gene), which is 
colored red, would have the highest centrality score because of its high expression and connectivity.
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The linear system defined in equation 2.5 is completely 
characterized by the matrix ΘA, which can be viewed as an 
adjacency matrix of a directed graph whose nodes represent 
genes, and an edge from gene g

i
 to gene g

j
 is equal to θ

j 
r2

ij 
.

If ΘA is a primitive matrix (see below for a definition), 
the Perron-Frobenius theorem37 states that it has a unique, 
positive largest eigenvalue whose eigenvector has only pos-
itive entries. This guarantees that the maximal eigenvalue 
in equation 2.6 will dominate the long-term behavior of the 
system defined by equation 2.5. This property justifies 
choosing the corresponding eigenvector as a measure of 
gene centrality. Each element in this vector is a centrality 
score and is proportional to the long-term “state” of the 
associated node in the gene network.

A primitive matrix M is a nonnegative square matrix 
such that there is a number k for which all elements of Mk 
are strictly positive. Since ΘA is not always a primitive 
matrix, minor modification in its structure needs to be made 
for the analysis above to apply. A sufficient condition for a 
nonnegative matrix to be primitive is that the matrix must 
be irreducible and have strictly positive elements along the 
main diagonal. An irreducible matrix is equivalent, in graph 
theoretic terms, to a fully connected network. In the case of 
a graph, it is thus sufficient to eliminate unconnected nodes 
until the remaining ones are fully connected and add self-
loops to one or all nodes as shown in Figure 3. Similarly, to 
transform ΘA to a primitive matrix, it is sufficient to make 
all elements on the principal diagonal positive, which is 
equivalent to the condition θ

i
 > 0, and to discard uncon-

nected nodes.
Separate ΘA matrices were calculated for each breast 

cancer subtype (BA1, BA2, HER2I, HER2NI, LA, and LB) 
and the principal eigenvector determined. Genes that were 
eliminated to make ΘA primitive were assigned centrality 
score zero, while the rest were assigned scores from the dom-
inant eigenvector. To allow the comparison of centrality 
scores between subtypes, the scores for each subtype were 
normalized by dividing by the median score across all genes.

Identifying candidate therapeutic targets. Outlier scores (θ) 
and Pearson correlation values (r) were calculated for each 
gene across all samples. The outlier score is a measure of 
the relative overexpression of a gene in one subtype com-
pared to all others. It is defined as the percentage of tumor 
samples that overexpress a particular gene in the subtype. 
To make the score robust, the outlier score for each subtype 
was defined as the mean over the distribution of outlier 
scores across bootstrap samples. To reduce sample size 
bias, each bootstrap dataset was chosen by random sam-
pling of an equal number of samples from each subtype. 
Outlier score values were determined separately for the 2 
datasets (GSE2034 and GSE4992) and then merged into 
one metaoutlier score by taking a weighted mean of the 

individual scores over bootstrap datasets. Similarly, Pear-
son correlation values between gene pairs were calculated 
for each of the 6 tumor classes for both datasets and then 
merged into metacorrelation values. Correlations that were 
significantly different between the 2 datasets were dis-
carded. Centrality scores for each gene were calculated for 
the networks built from Pearson correlations between pairs 
of genes and outlier scores, using a procedure described in 
the Materials and Methods section. To allow comparison of 
scores across subtypes, centralities within each subtype 
were sorted and then divided by the median value over the 
entire gene set.

High correlation scores are transitive (linked across sev-
eral genes) and can identify cliques of overexpressed genes 
with similar centrality scores. To find the genes most likely 
to cause a phenotypic change upon knockdown, we pruned 
the genes with high centrality scores in each subtype to 
known oncogenes. These were obtained from Agilent 
(Santa Clara, CA) and came as part of the GeneSpring bio-
informatics software package. Oncogenes with high cen-
trality scores identified by our analysis are presented in 
Table 2 along with the associated outlier scores calculated 
by meta-analysis over GSE2034 and GSE4992 gene expres-
sion tables. The full list of genes from the combined analy-
sis is given in Supplementary Table S3, while Supplementary 
Tables S4 and S5 list the results for the individual analysis 
of GSE2034 and GSE4922.

Immunohistochemistry. Anti-YES1 antibody (Santa Cruz 
Biotechnology, Santa Cruz, CA) was first optimized on 
human breast tissue microarray slides using the Discovery 
XT (Ventana Medical Systems, Tucson, AZ) automated 
immunostainer. Before hybridization, breast cancer tissue 
slides were deparaffinized in a 60°C oven for 1 hour fol-
lowed by 3 × 5 minutes in xylene, and hydrated in 100%, 
80%, and 70% ethanol and dH

2
O. Antigen retrieval was 

performed by using Cell Conditioning Solution (Ventana 
Medical Systems) for 72 minutes. Anti-c-Yes antibody was 
applied at a dilution of 1:30 and incubated at 37°C for  
1 hour, followed by 12 minutes with a universal secondary 
antibody (Ventana Medical Systems). DABMap (Ventana 
Medical Systems) was used for chromogenic detection  
after which slides were counterstained with hematoxylin 
(Richard-Allan Scientific, Kalamazoo, MI) and dehydrated 
in 70%, 80%, and 100% ethanol.

Cell culture conditions. MDA468 and MDA231 cells were 
maintained in DMEM/F12 (Gibco, Grand Island, NY) sup-
plemented with 5% fetal bovine serum (FBS) (Gibco), 1% 
amino acid (Cellgro, Manassas, VA), and 1% sodium pyru-
vate (Sigma, St. Louis, MO); BT549 and SKBR3 cells 
were maintained in RPMI 1640 (ATCC) with 10% FBS; 
MCF7 and HEK-293T in DMEM (Gibco) with 10% FBS 
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and MCF10A were grown in DMEM/F12 to which the  
following were added: 5% horse serum (Invitrogen, Carls-
bad, CA), 20 ng/mL epidermal growth factor (Invitrogen), 
100 ng/mL cholera toxin (Sigma), 0.01 mg/mL insulin 
(Sigma), and 500 ng/mL hydrocortisone (Sigma). With the 
exception of HEK-293T cell culture media, all presented 
solutions had an addition of 1% penicillin/streptomycin 
(Gibco).

Immunoblotting. After incubation, cells were washed in 
cold (4°C) PBS solution and then kept on ice with NETN 
buffer (20 mM Tris, 150 mM NaCl, 1 mM EDTA, 0.5% 
NP40, 1x protease inhibitor cocktail [Sigma]) for 15  
minutes. Cells were then scraped and collected in 1.5-mL 
tubes and incubated on ice for 5 minutes. Whole cell protein 
was then extracted by sonication followed by 14,000 rpm 
centrifugation for 10 minutes. The supernatant was then 
collected and quantified by using a Bradford-based38 pro-
tein assay (Bio-Rad, Hercules, CA). After loading 25 to 50 
µg of protein onto 10% polyacrylamide gels, they were sub-
ject to electrophoresis, transferred to PVDF membranes 
(Bio-Rad), and probed with antibodies against YES1 
(1:1,000; BD Transduction Laboratories, San Diego, CA) 
and GAPDH (1:5,000; Abcam, Cambridge, UK).

Lentivirus production. To suppress YES1, we introduced 
shRNA specific for the following sequences using pLKO.1 
lentiviral vectors39 acquired from Open Biosystems: 
shYES1 #1: CCAGCCTACATTCACTTCTAA; shYES1 
#2: ACCACGAAAGTAGCAATCAAA; and shYES1 #3: 
CCTCGAGAATCTTTGCGACTA. A standard 18-bp non-
hairpin control (CCGCAGGTATGCACGCGT) was also 
acquired from Addgene (Cambridge, MA) together with 
psPAX2 packaging plasmid and pMD2.G envelope plas-
mid. Lentiviruses were produced by transiently transfecting 
individual shRNA constructs together with packaging and 
envelope plasmids into HEK-293T cells using Fugene 6 
(Roche, Basel, Switzerland). Viral supernatants were col-
lected and passed through 0.45-µm syringe filters.

Cell proliferation assays. Cells were plated in 6-cm culture 
dishes and grown in the incubator until they were 70% con-
fluent. After changing to fresh culture media, 8 µg/mL of 
polybrane (Millipore, Billerica, MA) was added together 
with 0.5 mL of each of the previously prepared lentiviral 
solutions to separate dishes: one for the lentivirus contain-
ing the scrambled shRNA (shSRC) and one corresponding 
to the lentivirus designed to knock down the expression of 
YES1 (shYES1). After 24 hours, the media containing viral 
particles were replaced with fresh media to which 3 µg/mL 
puromycin (Sigma) was added in order to select for infected 
cells. The cells kept on growing for 3 to 4 days until a stable 
population was obtained.

Cells expressing shYES1 and shSCR were separately 
plated in triplicates in 12-well plates in the following quan-
tities: 50 × 103 cells for MDA231, BT549, and MCF10A; 
25 × 103 cells for MDA468 and SKBR3; and 10 × 103 cells 
for MCF7. After 6 days of growing in specific media sup-
plemented by 3 µg/mL puromycin, cells in each well were 
collected and counted by trypan blue exclusion using a 
Beckman Coulter counter (Brea, CA).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with 
respect to the authorship and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research and/or authorship of this article: This work was 
supported in part by the New Jersey Commission on Cancer 
Research (to E.B.), grant number: 09-112-CCR-E0.

References

  1.	 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 

2009. CA Cancer J Clin. 2009;59(4):225-49.

  2.	 Anim JT, John B, Abdulsathar SA, et al. Relationship between the 

expression of various markers and prognostic factors in breast cancer. 

Acta Histochem. 2005;107(2):87-93.

  3.	 Gruvberger S, Ringnér M, Chen Y, et al. Estrogen receptor status in 

breast cancer is associated with remarkably distinct gene expression 

patterns. Cancer Res. 2001;61(16):5979-84.

  4.	 Diermeier S, Horváth G, Knuechel-Clarke R, Hofstaedter F, Szöllosi 

J, Brockhoff G. Epidermal growth factor receptor coexpression modu-

lates susceptibility to Herceptin in HER2/neu overexpressing breast 

cancer cells via specific erbB-receptor interaction and activation. Exp 

Cell Res. 2005;304(2):604-19.

  5.	 Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence 

of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 

2004;351(27):2817-26.

  6.	 Van De Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression 

signature as a predictor of survival in breast cancer. N Engl J Med. 

2002;347(25):1999-2009.

  7.	 Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human 

breast tumors. Nature. 2000;406(6797):747-52.

  8.	 Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of 

breast carcinomas distinguish tumor subclasses with clinical implica-

tions. Proc Natl Acad Sci U S A. 2001;98(19):10869-74.

  9.	 Hu Z, Fan C, Oh D, et al. The molecular portraits of breast tumors 

are conserved across microarray platforms. BMC Genomics. 

2006;7(1):96.

10.	 Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast 

tumor subtypes in independent gene expression data sets. Proc Natl 

Acad Sci U S A. 2003;100(14):8418-23.

11.	 Cheang MC, Voduc D, Bajdik C, et al. Basal-like breast cancer 

defined by five biomarkers has superior prognostic value than triple-

negative phenotype. Clin Cancer Res. 2008;14(5):1368-76.



YES1 is a therapeutic target in basal-like breast cancers / Bilal et al.	 1073

12.	 Siegal ML, Promislow DE, Bergman A. Functional and evolution-

ary inference in gene networks: does topology matter? Genetica. 

2007;129(1):83-103.

13.	 Alexe G, Dalgin GS, Scanfeld D, et al. High expression of 

lymphocyte-associated genes in node-negative HER2+ breast cancers  

correlates with lower recurrence rates. Cancer Res. 2007;67(22): 

10669-76.

14.	 Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict 

distant metastasis of lymph-node-negative primary breast cancer. Lan-

cet. 2005;365(9460):671-9.

15.	 Dalgin GS, Alexe G, Scanfeld D, et al. Portraits of breast cancer pro-

gression. BMC Bioinformatics. 2007;8:291.

16.	 Alexe G, Dalgin GS, Ramaswamy R, Delisi C, Bhanot G. Data 

perturbation independent diagnosis and validation of breast cancer 

subtypes using clustering and patterns. Cancer Inform. 2007;2: 

243-74.

17.	 Ivshina AV, George J, Senko O, et al. Genetic reclassification of histo-

logic grade delineates new clinical subtypes of breast cancer. Cancer 

Res. 2006;66(21):10292-301.

18.	 Sugawara K, Sugawara I, Sukegawa J, et al. Distribution of c-yes-1 gene 

product in various cells and tissues. Br J Cancer. 1991;63(4):508-13.

19.	 Han J, Kamber M. Data mining: concepts and techniques (The  

Morgan Kaufmann Series in Data Management Systems). San  

Francisco: Morgan Kaufmann; 2001.

20.	 Spearman C. The proof and measurement of association between two 

rings. Am J Psychol. 1904;(15):72-101.

21.	 Kendall MG. A new measure of rank correlation. Biometrika. 

1938;30(1):81-93.

22.	 Margolin AA, Nemenman I, Basso K, et al. ARACNE: an algorithm 

for the reconstruction of gene regulatory networks in a mammalian 

cellular context. BMC Bioinformatics. 2006;7(Suppl 1):S7.

23.	 Falzarano SM, Navas M, Simmerman K, et al. ERG rearrangement 

is present in a subset of transition zone prostatic tumors. Mod Pathol. 

2010;23(11):1499-506.

24.	 Perner S, Mosquera J, Demichelis F, et al. TMPRSS2-ERG fusion 

prostate cancer: an early molecular event associated with invasion. 

Am J Surg Pathol. 2007;31(6):882-8.

25.	 Choi Y, Bocanegra M, Kwon MJ, et al. LYN is a mediator of 

epithelial-mesenchymal transition and a target of dasatinib in breast 

cancer. Cancer Res. 2010;70(6):2296-306.

26.	 Huang F, Reeves K, Han X, et al. Identification of candidate molecu-

lar markers predicting sensitivity in solid tumors to dasatinib: ratio-

nale for patient selection. Cancer Res. 2007;67(5):2226-38.

27.	 Finn RS, Dering J, Ginther C, et al. Dasatinib, an orally active small 

molecule inhibitor of both the src and abl kinases, selectively inhibits 

growth of basal-type/“triple-negative” breast cancer cell lines grow-

ing in vitro. Breast Cancer Res Treat. 2007;105(3):319-26.

28.	 Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Complete 

sequencing of the p53 gene provides prognostic information in breast 

cancer patients, particularly in relation to adjuvant systemic therapy 

and radiotherapy. Nat Med. 1995;1(10):1029-34.

29.	 Benito M, Parker J, Du Q, et al. Adjustment of systematic microarray 

data biases. Bioinformatics. 2004;20(1):105-14.

30.	 Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of 

TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci-

ence. 2005;310(5748):644-8.

31.	 Cochran WG. The combination of estimates from different experi-

ments. Biometrics. 1954;10(1):101-29.

32.	 Hedges LV, Olkin I. Statistical methods for meta-analysis. New York: 

Academic Press; 1985.

33.	 Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of 

microarray normalization procedures: effects on reverse engineering 

gene networks. Bioinformatics. 2007;23(13):282-8.

34.	 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring incon-

sistency in meta-analyses. BMJ. 2003;327(7414):557-60.

35.	 Bonacich P. Simultaneous group and individual centralities. Soc Net-

works. 1991;13(2):155-68.

36.	 Bonacich P. Power and centrality: a family of measures. Am J Sociol. 

1987;92(5):1170-82.

37.	 Seneta E. Non-negative matrices and Markov chains. New York: 

Springer; 2006.

38.	 Bradford MM. A rapid and sensitive method for the quantitation of 

microgram quantities of protein utilizing the principle of protein-dye 

binding. Anal Biochem. 1976;72:248-54.

39.	 Moffat J, Grueneberg DA, Yang X, et al. A lentiviral RNAi library 

for human and mouse genes applied to an arrayed viral high-content 

screen. Cell. 2006;124(6):1283-98.

40.	 Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular 

characterization of the claudin-low intrinsic subtype of breast cancer. 

Breast Cancer Res. 2010;12:R68.

41.	 Silver DP, Richardson AL, Eklund AC, et al. Efficacy of neoad-

juvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 

2010;28(7):1145-53.

42.	 Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell 

lines for the study of functionally distinct cancer subtypes. Cancer 

Cell. 2006;10(6):515-27.


