Single Cell Motility in Artificial Tissue

Rhoda J. Hawkins Lecturer in Physics, University of Sheffield

Raphaël Voituriez, Jean-François Joanny, Jacques Prost Matthieu Piel, Ana-Maria Lennon-Dumenil, Philippe Chavrier

KITP Santa Barbara 25th June 2012

Metastasis - cell migration in tissues

By better understanding the mechanics of cell motility could we learn to stop metastasis?

Plan

Introduction

Cell migration on 2D & in 3D confinement

Cell Motility in microchannels

- Experiments microchannels
- Model & results

Cell Motility in 3D matrigel

- Experimental system
- Model & linear stability analysis
- Simulations & comparison with experiments

surface

amellipodium

The role of adhesion

Integrin knockouts

Integrin needed for migration on 2D surface

Wild type & integrin knockouts migrate in vitro

& in vivo (mice)

Lammermann, Sixt et al. Nature, 2008

Cell migration in tissues

Lammermann, Sixt et al. Nature, 2008

Is there a different mechanism for motility in confinement?

Migration in microchannels

- Simplified quasi 1D model of 3D cell migration
- Isolates effect of confinement
- Controlled & tunable geometry

Modelling Cytoskeleton dynamics

Cytoskeleton: out of equilibrium soft matter

theory of active gels

Cytoskeleton polymers: microtubules + actin

Molecular motors: myosin + actin ➤ contractility

> transport

Active gel equations

$$2\eta u_{ij} = \sigma_{ij} + \frac{1}{2}(p_i h_j + p_j h_i) + \frac{1}{2}(p_i h_j - p_j h_i) + \frac{\zeta \Delta \mu \, p_i p_j}{2}$$
passive fluid polar terms

liquid crytstal stress-

polarisation coupling

$$\frac{\mathrm{D}p_i}{\mathrm{D}t} = \frac{1}{\gamma} - \nu u_{ij} p_j$$

rotational viscosity

molecular field conjugate to polarisati

$$h_i = -\frac{\delta F}{\delta p_i} + \lambda' p_i$$

Model

actin polymerisation perpendicularity

friction depicted than bases opposed to restrict on the flow on sufficient specifically considered to regimes:
$$\frac{1}{12} \frac{1}{12} \frac{1}{12$$

Results – Pressure profile

theory

RICM experiment

Cell crusher

Maël Le Berre

Cell crusher

Maël Le Berre

channel 4x4µm polyacrylamide, coating fibonectin-Alexa488, rigidity: 20kPa

velocity

polarisation
$$\theta(z) = -\frac{\pi}{2}(1 - \frac{2z}{b})$$

Adding myosin motor activity

Darcy's law with active myosins

$$v(x) = -\frac{b^2}{12\eta} (1 + \tilde{\xi}^{-1}) \frac{\mathrm{d}P}{\mathrm{d}x} - \frac{b\tilde{\zeta}(x)\Delta\mu}{4\pi\eta}$$

Conclusion (part 1): cell rock

climinación finement cells build up friction needed to migrate by active actin polymerisation pushing against the walls

Plan

Introduction

✓ Cell migration on 2D & in 3D confinement

Cell Motility in microchannels

- ✓ Experiments microchannels
- ✓ Model & results

Cell Motility in 3D matrigel

- Experimental system
- Model & linear stability analysis
- Simulations & comparison with experiments

Cells in 3D confinement in matrigel

- MDA-MB-231 cell (breast cancer)
- In 3D Matrigel
- Cell expressing mCherry-Lifeact labels F-actin
- Renaud Poincloux, Philippe Chavrier

- Spherical cell with thin shell of (de)polymerising gel
- 2D compressible gel (≅ variable thickness)
- Myosin □ active stressx local myosin concentration
- Myosin (de)attaches to cortex, diffuses in cell bulk & cortex & is carried by the induced actin flow in cortex

Dynamical equations

mass conservation for 2D compressible gel:

$$\partial_t \delta \rho + \nabla \cdot ((1 + \delta \rho) \nabla \psi) = -k_d \delta \rho$$

$$\nabla \left(-\zeta \mu - \alpha \delta \rho + \beta \nabla^2 \delta \rho \right) = \xi \nabla \psi$$

- diffusion of myosin in cytoplasm $\partial_t c = D_c \Delta c$
- conservation of myosin at cortex/cytoplasm interface:

$$-D_c \partial_r c|_{r=R} = k^{\text{on}} c(R) - k^{\text{off}} \mu$$

conservation of myosin in the cortex:

$$\partial_t \mu + \nabla \cdot (\mu \nabla \psi) = k^{\text{on}} c(R) - k^{\text{off}} \mu + D_\mu \nabla^2 \mu$$

diffusion

in cortex

analysis

Homogeneous stationary solution:

$$\psi = \delta \rho = 0$$
 $\mu = \mu_0$ $c = c_0 = k^{\text{off}} \mu_0 / k^{\text{on}}$

Spherical harmonic perturbation:

$$c(r,\phi) = c_0 + c_{l,m}(r)Y_{l,m}(\theta,\phi)e^{st}$$

$$c_{l,m}(r) = \tilde{c}_{l,m}I_{l+1/2}(\sqrt{\frac{s}{D_c}}r)/\sqrt{r}$$

 \longrightarrow dispersion relation s(l)

1D approximation (neglect curvature)

dispersion relation cubic in

$$(8s + D_c k^2)(s + k^{\text{off}} + D_\mu k^2) + k^{\text{on}}(s + D_\mu k^2)) (\xi(s + k_d) + k^2(\alpha + \beta k^2))$$

$$+ \zeta \mu_0 k^2 (s + k_d)(s + k^{\text{on}} + D_c k^2) = 0$$
where $k^2 = l(l+1)/R^2$

Activity threshold above which instability appears > 0

$$Pe = \frac{-\zeta\mu_0}{\tilde{D}\xi} > Pe_c$$
 Critical Péclet number
$$\tilde{\mathbf{D}} = \frac{\mathbf{D_c}\mathbf{k^{off}} + \mathbf{D}_{\mu}\mathbf{k^{on}}}{\mathbf{k^{on}}}$$

Results – dispersion relation (l)

Mode l = 1

MDA-MB-231 cell in 3D Matrigel Renaud Poincloux, Philippe Chavrier

 \square cell motion since stres $m{s}_{nt}$ integrates to non zero force:

force: $F=\frac{8\pi}{3}h_0R^2\xi v_0$ \square blebbing due to weakend at fron t>1 \longrightarrow several blebs

Long time behaviour

- Full nonlinear treatment required
- Did with numerical simulations for 1D
- Compare with experimental measurements:
 - –MB-231 tumor cells seeded in 3D matrigel
 - Intensity mCherry-Lifeact labeled actin
 - –Intensity of labeled myosin
 - -Kymographs give velocity of actin
- Maximum and background intensities fitted

Results – actin & myosin density

Results – actin velocity

Conclusion (part 2): spherical

swimmers In 3D confinement spontaneous cortical flow generated by actomyosin contraction can lead to cell migration

Discussion questions

- How could we stop metastatic cancer cells moving without stopping immune cells moving?
- What (if anything) are useful things (theoretical) physicists could do to guide therapeutics?

Fabricating microchannels

Intro: Dendritic cells on a flat surface

Blebbing

Myosin light chain localization in a filamindeficient melanoma cell. Charras J Microsc. 2008 Sep;231(3):466-78

- Blebs are spherical protrusions of the membrane
- Produced by contraction of the actomyosin cortex
- Involved in apoptosis but also division & spreading

Blebbing motility?

blebbing Dictyostelium discoideum.
Yoshida & Soldati, J.

Cell Sci. 119, 3833– 3844 (2006)

Blebbing assisted migration, Charras & Paluch, Nat Rev Mol Cell Biol. 2008 Sep;9(9):730-6

- Blebs may play a role in migration in 3D environments
- Alternative migration mechanism to lamellipodium?
- We develop a model for migration due to actomyosin contraction – the same mechanism causing blebs