Direct Detection of Light Dark Matter with Optical Phonons

Tongyan Lin UCSD

April 30, 2018, KITP

Based on 1712.06598 Knapen, TL, Pyle, Zurek and work in progress with authors + S. Griffin

Direct detection of WIMPs

Typical threshold in experiment: ~keV nuclear recoil

Direct detection of light DM

Direct detection of light DM

TeV

Goal: access total DM energy, obtain sensitivity to ~meV recoils for keV DM scattering.

DM-nucleus interactions

DM-nucleon scattering

For low mass dark matter, the possible momentum transfer is

 $Q \sim m_\chi v \sim 1/\text{Angstrom}$

for $m_X = MeV$

At these scales, DM no longer scatters off of single atoms — the relevant degree of freedom is a phonon

DM-phonon interactions

DM-phonon scattering

possible momentum transfer is For low mass dark matter, the

 $Q \sim m_\chi v \sim 1/\text{Angstrom}$

for $m_X = MeV$

Quasiparticle

At these scales, DM no longer scatters off of single atoms — the relevant degree of freedom is a phonon

DM-phonon interactions

Quasiparticle

DM scattering into single or few phonons has different kinematics

Superfluid helium

Long-lived quasiparticle excitations Possible ~meV thresholds

See Dan McKinsey's talk

Polar materials

- What kind of phonons can be created by dark photon interactions?
- At long wavelengths, material is neutral: very limited rate to produce acoustic phonons
- Long-wavelength <u>optical</u>
 <u>phonons in polar materials</u>
 generate a macroscopic E field
 (and therefore also E' field)

Kinetically mixed dark photon A'

$$\epsilon e A'_{\mu} J^{\mu}_{\rm EM}$$

Polar materials

- What kind of phonons can be created by dark photon interactions?
- At long wavelengths, material is neutral: very limited rate to produce acoustic phonons
- Long-wavelength <u>optical</u>
 <u>phonons in polar materials</u>
 generate a macroscopic E field
 (and therefore also E' field)

Optical phonon

Polar materials

= Oppositely charged ions in crystal

Longitudinal acoustic (LA)

E-field

Longitudinal optical (LO)

LO phonons ~ coherently oscillating dipoles

LO phonon is dipole interaction: Dark photon interaction with

 $H \propto \kappa Q \, {f E'} \cdot {f u}$ \uparrow \uparrow Dark photon field $\,$ Ion displacement

(dipole)

Example: GaAs

Crystal structure

 10^{2}

COTO

space for $m_X = 25 \text{ keV}$

optical phonons

Gapped

Allowed phase

Ga, +2.1 effective charge

O As, -2.1 effective charge

Energy ω [meV] 10^{0} 10^1 10^1 $\omega > 10 \,\mathrm{meV}$ $\omega > 1 \,\mathrm{meV}$ Momentum q [eV] 10^{2} 10^{3}

Phonon band structure in GaAs

GaAs detector

Concept is similar to SuperCDMS:

DM scattering creates
single optical phonon.
These down convert into
sub-meV athermal phonons
which are collected at surface

Instrument ~% of surface to collect deposited energy with O(1) efficiency

GaAs detector

TES with ~72 meV resolution already demonstrated on test chips

Radiogenic backgrounds are at much higher energy; here dominant backgrounds are solar neutrinos and coherent photon scattering, < 1 event/kg-yr.

Dark photon interactions

- DM sensitivity from optical phonon production in GaAs
- GaAs could cover the entire "freeze-in" region even with ~10 grammonth exposure
- Pure GaAs crystals readily available now

DM mass

all projections assume kg-yr exposure

Dark photon interactions

Out-of-equilibrium annihilations of SM

DM mass

all projections assume kg-yr exposure

DM-nucleon scattering

Single phonon production can be used for sub-MeV phonons in superfluid He DM-nucleon scattering, competitive with multi-

Dark matter absorption

sub-keV bosonic

- Dark photon is all of the dark matter
- Mono-energetic absorption signal

Kinetically mixed dark photon

DM mass

Even better: sapphire

Similar advantages as GaAs:

- Optical phonons allow coupling to dark photons
- Optical modes are gapped, with energies 30-100 meV better for light DM scattering
- Sensitive to different DM models
- Possible fabrication of high purity crystals, good athermal phonon properties

Al₂O₃ (Sapphire)

Sapphire phonons

Many more "high energy" optical phonon modes

Potential for directional detection with q-dependent phonon couplings and energies.

Phonon band structure in Al₂O₃ (Sapphire)

Sapphire phonons

Size of dipole and energy of optical phonon varies with phonon propagation direction

Daily modulation

Direction-dependent phonon modes in sapphire (Al₂O₃) lead to daily modulation as the Earth rotates

In phase with sidereal day, not solar day — could be distinguished from terrestrial backgrounds.

Daily modulation

Direction-dependent phonon modes in sapphire (Al₂O₃) lead to daily modulation as the Earth rotates

In phase with sidereal day, not solar day — could be distinguished from terrestrial backgrounds.

Conclusions

- Only scratched the surface in low mass DM detection; ~gram-scale targets can reach new parameter space
- detection may be possible as well. scattering and absorption into optical phonons. Directional Polar materials are promising target for sub-MeV DM
- Interesting times for direct detection of low mass DM!

