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Direct detection of WIMPs
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Direct detection of light DM
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Direct detection of light DM
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Goal: access total DM energy, obtain sensitivity to
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DM-nucleus interactions

For low mass dark matter, the

: ossible momentum transfer is
DM-nucleon scattering P

Q ~ m,wv ~ l/Angstrom

X X

At these scales, DM no longer scatters
n off of single atoms — the relevant
degree of freedom is a phonon
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DM-phonon interactions

For low mass dark matter, the

DM-phonon scattering possible momentum transfer is

P At these scales, DM no longer scatters
Quasiparticle off of single atoms — the relevant
degree of freedom is a phonon

Q ~ m,wv ~ l/Angstrom

for mx = MeV



DM-phonon interactions
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Supertluid helium

Long-lived quasiparticle excitations

Possible ~meV thresholds athermal evaporaton
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Polar materials

- What kind of phonons can be
created by dark photon
interactions?

- At long wavelengths, material is
neutral: very limited rate to
produce acoustic phonons

- Long-wavelength optical
phonons in polar materials
generate a macroscopic E field
(and therefore also E’ field)
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Polar materials

- What kind of phonons can be

created by dark photon X X
interactions?
gp
A Dark

- At long wavelengths, material is photon

neutral: very limited rate to L E€

produce acoustic phonons A
-+ Long-wavelength optical Optical phonon

phonons in polar materials
generate a macroscopic E field
(and therefore also E’ field)
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Polar materials

® @O - Oppositely charged ions in crystal k
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E-field
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LO phonons ~ coherently oscillating dipoles

/
Dark photon interaction with H \A@_m . ﬂ

LO phonon is dipole interaction:  park photon field lon displacement
(dipole)
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Example: GaAs

Allowed phase Gapped

Crystal structure space for mx = 25 keV optical phonons
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Phonon band structure in GaAs
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GaAs detector

Concept is similar to
SuperCDMS:

DM scattering creates
single optical phonon.
These down convert into
sub-meV athermal phonons

which are collected at surface.

Instrument ~% of surface
to collect deposited energy
with O(1) efficiency

TES with Ey, ~ 10 meV

. 5mm x 5mm x5 mm Polar Crystal
. TES and QP collection antennas (W)

. Athermal Phonon Collection Fins (Al)

b

~gram of GaAs



GaAs detector

TES with Ey, ~ 10 meV

. 5mm x 5mm x5 mm Polar Crystal

TES with ~72 meV
resolution already
demonstrated on test chips

. TES and QP collection antennas (W)

. Athermal Phonon Collection Fins (Al)

Radiogenic backgrounds
are at much higher energy;
here dominant backgrounds
are solar neutrinos and
coherent photon scattering,

< 1 event/kg-yr. ~gram of GaAs
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Dark photon interactions
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Dark photon interactions
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DM-nucleon scattering

Single phonon production
can be used for sub-MeV
DM-nucleon scattering,
competitive with multi-
phonons in superfluid He

Knapen, TL, Zurek 2017
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Dark matter absorption

sub-keV bosonic Kinetically mixed dark photon
A 10 = constraints =

Direct detection
constraints
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Even better: sapphire

Similar advantages as GaAs:

-+ Optical phonons allow
coupling to dark photons

Optical modes are gapped,
with energies 30-100 meV —
better for light DM scattering

Sensitive to different DM models

Possible fabrication of
high purity crystals, good
athermal phonon properties Al>Os3 (Sapphire)
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Sapphire phonons

Gapped optical modes
Al203 phonons \
. T}
+ Many more “high Ho /L/ :
energy” optical phonon
modes

- Potential for directional
detection with g-
dependent phonon
couplings and energies.

(0,0,q.) (0,0,0) (0,qy,0)
q

Phonon band structure in
Al2O3 (Sapphire)
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Sapphire phonons

Size of dipole and energy of optical phonon
varies with phonon propagation direction

Animations made with
21 H. Miranda’s phonon webtool



Daily modulation

Direction-dependent Earth axis of
phonon modes in g —
sapphire (Al,O3) lead
to daily modulation
as the Earth rotates

t=0

i

In phase with sidereal
day, not solar day —
could be distinguished
from terrestrial cautor
backgrounds.

Cygnus

0 ~ 42°
DEC ~ 48°
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Daily modulation

Direction-dependent

Scalar nucleon coupling
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Conclusions

+ Only scratched the surface in low mass DM detection;
~gram-scale targets can reach new parameter space

- Polar materials are promising target for sub-MeV DM
scattering and absorption into optical phonons. Directional
detection may be possible as well.

- Interesting times for direct detection of low mass DM!

meV eV keV MeV GeV TeV

_ | _ _ _ | » DM mass

Polar materials

Thanks!
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