Defects as a path to a new clas. of magnetic materials

I.S. Elfimov¹, S. Yunoki² and G.A. Sawatzky

Solid State Physics Laboratory, Materials Science Center, University of

International School for Advanced Studies (SISSA),

Polar Surfaces

- Existence of non-neutral or charged planes in crystal structures
- Rocksalt (111) surfaces: MgO,NiO

Finite slab of charged planes

 $\Delta V = 58$ Volt per MgO or NiO double layer

IMPOSSIBLE!!

Finite slab of charged planes Half-charge terminated

Potential is determined by the boundary conditions!!

Surface

- -facets: pyramids with neutral, e.g. (100) surfaces
- -reconstructs: e.g. octopolar at NiO (111)
- -attracts charged contaminants: e.g. OH-, I-
- -charge redistribution: ionic charge at surface ≠ in bulk

LSDA results: Total DOS

Model approach

"O₆" cluster: 2 holes in p-orbitals

"Ca₆" cluster: 2 electrons in s-orbitals

FIG. 3: (a) Definition of σ -orbitals. (b) molecular orbital with a_{1g} symmetry. (c) one of doubly degenerate molecular orbitals with e_g symmetry. (d) one of triply degenerate molecular orbitals with t_{1g} symmetry.

Ca vacancy in Cao

Definition of parameters

the

Results: Energy diagrams

(Q) a₁₀ 0 Single-particle picture (a) t S

Energy (tpp)

Tree lowest states for two particles

ELECTRONS in cation orbitals and (e) (a)

ELECTRONS in cation orbitals.

(a)

HOLES in anion orbitals and

0

03 S

10.0

U (eV)

HOLES in anion orbitals.