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|. Doniach’s T=0 phase diagram for the Kondo lattice
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Loca moments choose
some static spin
arrangement

Jraky ~ e 110 T ~exp(-t/J,)

SDW

H= Etijqzcja + z (JKQLfaa‘QJ [éfi)
1<) 1
— Conduction electrons;
S, — localized f,, moments (assumed S=1/2, for specificity)

“Heavy” Fermi liquid with
moments Kondo screened
by conduction eledrons.
Fermi surface obeys
Luttinger’ s theorem.

FL

I/t

Luttinger’ s theorem on a d-dimensional lattice for the FL phase

21T

Let v, be the volume of the unit cell of the ground stete,
n; be the total number density of eledrons per volume v,
(need not be an integer)

N =N +nc=1+nc
2x—0__(Volume enclosed by Fermi surface)
=n, (mod2)

A “large” Fermi surface

Subir Sadchdev, Yale University (KITP CEM Conference 11/21/02)
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Arguments for the Fermi surface volume of the FL phase

Single ion Kondo effect impliesJ, — o at low energies

®+6060+ 606

(c" ' -¢ £ ) o) £710), S=1/2hole

[N ot

Fermi liquid of S=1/2 holes with hard-core repulson

Fermi surface volume = —(density of holes)mod 2
=-(1-n,)=(1+n,)mod2

Arguments for the Fermi surface volume of the FL phase

Alternatively:

Formulate Kondo lattice as the large U limit of the Anderson model

io 'io io~io fit  fil

H :ztiJCLCJU-‘-z( d f, +Vilc, +e, (nfiT +nm)+Un n )+

<] T

N =Ng ¥1c

For small U, Fermi surface volume = (nf + nc)mod 2.

Thisis adiabatically connected to the large U limit wheren, =1

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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Quantum critical point between SDW and FL phases

Spin fluctuations of renormalized S=1/2 fermionic quasiparticles, h,
(loosdly speaking, T, remainsfinite at the quantum critical point)

Gaussian theory of paramagnon fluctuations: @ ~ h:;i:cm'hg-

. .d%dw
Action: S—IW

—

(p(q,w)\z (o° +ed +1(5,T))

J.A. Hertz, Phys. Rev. B 14, 1165 (1976).
Characteristic paramagnon energy at finite temperature [(0,T) ~ TP withp > 1.

—~4
Arises from non-universal correctionsto scaling, generated by ¢ term.

J. Mathon, Proc. R. Soc. London A, 306, 355 (1968);

T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974);

T. Moriya, Soin Fluctuationsin Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985)
G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985);

A.J. Millis, Phys. Rev. B 48, 7183 (1993).

Quantum critical point between SDW and FL phases

Additional singular correctionsto quasiparticle self energy in d=2

Ar. Abanov and A. V. Chubukov Phys. Rev. Lett. 84, 5608 (2000);
A. Rosch Phys. Rev. B 64, 174407 (2001).

Critical point not described by strongly-coupled critical theory with universal
dynamic response functions dependent on zaw/k, T

In such atheory, paramagnon scattering amplitude would be determined by
ks T alone, and not by val ue of microscopic paramagnon interaction term.

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).

(Cortrary opinions: P. Coleman, Q. S........... )

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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Outline

l. Kondo latticemodels
Doniach’s phase diagram and its quantum critica point

[I. A new phase: FL*
Paramagnetic Sates of quantum antiferromagnets.
(A) Bond order, (B) Topological order.

[ll. Lieb-Schultz-Mattis-Laughlin-Bonested-Affleck-Y amanaka-
Oshikawa flux-piercing arguments

V. Extended phase diagram and its critical points

V. Conclusions

Remnsider Doniach phase diagram

1. A new phase: FL*

This phase preserves gin rotation invariance, and has a Fermi
surfaceof sharp eledron-like quasiparticles.

The state has “topological order” and associated neutral excitations.
The topological order can be eaily deteded by the violation of
Luttinger’ s theorem. It can only appea in dimensionsd > 1

2x (2V°) —(Volume enclosed by Fermi surface)
T

=(m =1)(mod2)

Precursors: L. Baentsand M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999);
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000);
S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002).

Subir Sadchdev, Yale University (KITP CEM Conference 11/21/02)
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It is more convenient to consider the Kondo-Heiseberg model:

H= Zt.,qoc,a+z( «CloTooCio f.) > 3u(i.1)Si 8

<] <]

Work in the regime J,, > J,

Determine the ground state of the quantum antiferromagnet defined by J,,,
and then couple to conduction electrons by J,

Ground states of guantum antiferromagnets

Begin with magnetically ordered states, and consider quantum
transitions which restore spin rotation invariance

Two classes of ordered states:

(A) Collinear spins (B) Non-collinear spins

L N TV SN
b e

T N T W
§ o e 8

D VU BV W

<§(r)> 0 N cos(QT) <§(r)> 0 Nicos(Qr )+ N2sin(Qr)
- NP = M 40 —2  —2
Q—(IT,IT), N =1 Q= B?,EH Ni: =N, =1; Ni/N; =0

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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(A) Collinear spins, bond order, and confinement

Bond-ordered sate

Quantum
trangition
] restoring Ly, —
spin
rotation & &—C(

invariance

(3(r)) 0 N cos(QT) < =4l14)41)

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

(A) Collinear spins, bond order, and confinement

Bond-ordered sate

Quantum
transition
—  [E€StOriNg L
spin
rotation

invariance
<§(r)> [0 N cos(QT) ) :J%QT l> _‘l T>)
Q =(n,rr); N’ = S=1excitation is
gapped N particle

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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State of conduction eectrons

At J= 0 the conduction electrons form a Fermi surface
on their own with volume determined by n,

Perturbation theory in J, is regular and so this state will be
stable for finite J

However, because n=2 (per unit cell of ground state)
n=ng+ n=nymod 2), and Luttinger’'s theorem is obeyed.

FL state with bond order

(B) Non-collinear spins, deconfined spinons,
Z, gauge theory, and topological order

D N TV W PN
b e wendion VAVAVAVAV,

e b e ey e TESONNG Ly A\v‘vmvé
b e b ro?g;inon \\vAv/AvA"v

¢ e, b e ey invariance Av \

S(r)) O Nicos(QT)+N2sin(QT) RVB state with freespinons

Q=T ATORE =N: =1, Nu: =0 o a0 25157,
03 V30

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773(1991) — Z, gauge theory
A.V. Chubukov, T. Senthil and S. Sachdev, Phys. Rev. Lett. 72, 2089(1994).

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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<§(r)> [0 Nz cos(Qlr )+ N2sin(Qr)
Q:%‘ir,ﬂlj' le :N; =1;N1DN2 =0

03 V30
Solve constraints by writing:

N1+iN2 =€ zaabzb

acc

where z, , aretwo complex numbers with
& +|z[ =1

Order parameter space: S,/Z,
Physical observables are invariant under the Z, gauge transformationz, — +z,

Other approachesto a Z, gauge theory:
R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991); S. Sachdev and M. Vojta,
J. Phys. Soc. Jpn 69, Suppl. B, 1 (2000).
X. G. Wen, Phys. Rev. B 44, 2664 (1991).
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).
R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2002).

L. B. loffe, M.V. Feigel' manA. loselevich, D. Ivanov, M. Troyer and G. Blatter,
Nature 415, 503 (2002).

Vortices associated with 11,(S,/Z,)=Z,

(B) South
e pole

Can also consider vortex excitation in phase without
magnetic order, (S(r))=0: vison

A paramagnetic phase with vison excitations suppressed hastopological order.
Suppresson of visons a'so allows z, quantato propagate — these are the spinons.

State with spinons must have topological order

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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State of conduction eectrons

At J= 0 the conduction electrons form a Fermi surface
on their own with volume determined by n,

Perturbation theory in J, is regular, and topological order is
robust, and so this state will be stable for finite J

So volume of Fermi surface is determined by
(n; -1)=n(mod 2), and Luttinger’s theorem is violated.

The FL* state

Outline

l. Kondo lattice models
Doniach’s phase diagram and its quantum critical point

1. A new phase FL*
Paramagnetic gates of quantum antiferromagnets:
(A) Bond order, (B) Topological order.

[11.  Lieb-Schultz-Mattis-L aughlin-Bonested -Affleck-Y amanaka
Oshikawa flux-pier cing ar guments

V. Extended phase diagram and its critical points

V. Conclusions
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I11. Lieb-Schultz-M attis-L aughlin-Bonesteal -Affleck-
Y amanaka-Oshikawa flux-piercing arguments

Unit cell &, a,

L/a, L/a,
coprime integers

Adiabatically insert flux ®=277 (units i=c=e=1) acting a0 1+ e€lectrons.
State changes from | W) to W) , andH ( JU™ =H (®) , where

@n . O
U=expg—) X, g
0L Z O

M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).

Adiabatic process commutes with the translation operator T, SO
momentum P, is conserved.

0
However UTU =T, expE,— > f E;

so shift in momentum AP, between statesU |W') 1ad |W) is

mL, 2
AP, = nT[rnod—D 1).
Vo U a0 ()

Alternatively, we an compute AP, by assuming it is absorbed by
quasiparticles of a Fermi liquid. Each quasiparticle has its momentum
shifted by 2m7/L , and so
Ap = 2T (Volume enclosed by Fermi surface) Ernodz—ng 2).
L (2n)’/(L.L,) 0 &[0
From (1) and (2), same agument iny diredion, using coprime L, /a,,L, /a,:

2 X

% 0)2 (Volume enclosed by Fermi surface) = n, (mod 2)
T

M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000).

Subir Sadchdev, Yale University (KITP CEM Conference 11/21/02)
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Effect of flux-piercing on atopologically

ordered quantum paramagnet

o] 9 [ ] Q Q (]
|D>= 2 (4] ¢ e ] C ]
9 9 b ] [ ] ] o
© [ (< ¢ 9 b ]

N. E. Bonested,

Phys. Rev. B 40, 8954 (1989).

G. Misguich, C. Lhuillier,

M. Mambrini, and P. Sindzingre,
A Eur. Phys. J. B 26, 167 (2002).

L )=y alo)

/)
X @
N
xll_o
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Effect of flux-piercing on atopologically

ordered quantum paramagnet

Vison \

(o] D [ ] Q Q (]
|D>= 2 (4] (< e (] C ]
[ 9o ] [ ] ] o
@ [ [ [ 9 2]

N. E. Bonested,

Phys. Rev. B 40, 8954 (1989).

G. Misguich, C. Lhuillier,

M. Mambrini, and P. Sindzingre,
A Eur. Phys. J. B 26, 167 (2002).

L, |W>:ZaD|D>

After flux insertion| D> U]

(—~1)ming s e | D)

)('_ 0

e
[ X J
o
al

d [ =
\Lx-z L1

Equivaent to inserting avison inside hole of the torus.

Vison carries momentum 7L, /v,

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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Flux piercing arqument in Kondo lattice

Shift in momentum is carried by n; electrons, where

Ne= N+ N,

In topologically ordered, state, momentum associated with n=1
electron is absorbed by creation of vison. The remaining
momentum is absorbed by Fermi surface quasiparticles, which
enclose a volume associated with n electrons,

The FL* state.

cond-mat/0209144

Outline

l. Kondo lattice models
Doniach’s phase diagram and its quantum critical point

1. A new phase FL*
Paramagnetic gates of quantum antiferromagnets:
(A) Bond order, (B) Topological order.

[11.  Lieb-Schultz-Mattis-Laughlin-Bonested -Affleck-Y amanaka-
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V. Extended T=0 phase diagram for the Kondo lattice

A
FL*

Magnetic
frustration

SDW*

SDW

¢ gauge theory. (Speaking loosely — Ty

Quantum criticdity associated
with the onset of topological
order — described by interacting

vanishesalong thisline)

FL

Hertz Gausgan paramagnon theory |

I/t
>

associated gauge fields.

* » phases have spinonswith Z, (d=2,3) or U(1) (d=3) gauge darges, and

* Fermi surface volume does not distinguish SDW and SDW* phases.

V. Extended T=0 phase diagram for the Kondo lattice

U(1) fractionalization (d=3)

A Quantum criticaity asciated
= SDW* with the onset of topological
_ AN order — described by interacting
Magnetic AN i .
: . ¢ gauge theory. (Speaking loosely — T
frustration ‘\ vanishesalong thisline)

FL
Hertz Gausdan paramagnon theory |
SDW
I/t
>

 Because of strong gauge fluctuations, U(1)-FL* may be unstable to

U(1)-SDW* at low temperatures.
* Only phases at T=0: FL, SDW, U(1)-SDW*.

Subir Sadchdev, Yale University (KITP CEM Conference 11/21/02)

14



Quantum phases and critical points of correlated metals

U(1) fractionalization (d=3) Mean-field phase diagram
R I B B L B AL I B4
/]
L / o
- /
e decoupled /
e f 1 |cm~In@m
=
@
(cf. A. Georges)

Kondo coupling  Jj

* Because of strong gauge fluctuations, U(1)-FL* may be unstable to
U(1)-SDW* at low temperatures.

* Only phases at T=0: FL, SDW, U(1)-SDW*.
 Quantum criticality dominated by a T=0 FL-FL* transition.

Strongly coupled guantum criticality with a
topological or spin-glass order parameter

Order parameter does not couple directly to simple observables

Dynamic spin susceptiblity

1

X (0,0) =
—iyw+ A(q-Q) +B+T® D[]Lw S
KeT [

Non-trivial universal scding function whichisa
property of a bulk d-dimensional quantum field
theory describing “hidden” order parameter.

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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Z, fractionalization

A

Superconductivity

Magnetic
frustration

FL

Hertz Gaussian paramagnon theory |

I/t
>

* Superconductivity isgeneric between FL and Z, FL* phases.

Z, fractionalization Mean-field phase diagram
03 T

025F

decoupled

e
o
a

Temperature T
)
[y
T

0.1 FL
005 FL* ]
Superconducto
0 L | | | coov o b e b 1

0 0.5 1 1.5 2 2.5 3 3.5 4

Kondo coupling Jy

Pairing of spinonsin small Fermi surface state induces
superconductivity at the confinement transition

Small Fermi surface state can aso exhibit a second-
order metamagnetic transition in an applied magnetic
field, associated with vanishing of a spinon gap.

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)
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Conclusions

* New phase diagram as a paradigm for clean metals with local moments.

* Topologically ordered (*) phaseslead to novel quantum criticality.

* New FL* alows easy detection of topological order by Fermi surface
volume

A

FL*
Magnetic

frustration

*
SDW L

SDW
I/t

Subir Sachdev, Yale University (KITP CEM Conference 11/21/02)



