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Phase Behavior Cylindrical aggregates are intermediate in terms of 
curvature of the surfactant film between spheres and bilayers
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Wormlike micelles
Long polymer-like chains resulting from the association of surfactant

Polar head Aliphatic chain

Usually : 
C16-surfactants and cationic
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Growth of cylindrical micelles (Israelachvil i 1976)

The end-cap enery E drives 
the unidimensional growth of the aggregates

End-cap

E ~ 20 kBT (~ 1 kBT per surfactant in the endcap)End-cap

Number density c(n) of micelles of aggregation number n :

  
c(n) =

c

n 2
exp(−

n

n 
)

c is the concentration
n is the average aggregation number

  n = c ×exp(E/ kBT)

Predictions are that micelles are broadly distributed in size, polydispersity index 2
Experimentally : 100 Å in length correspond to 200 molecules

Dynamic of breaking/recombination (Cates 1987)

Probabil ity of breakage ~ c1×L
(c1 and L are thermally activated)

Micelle of contour length L

L L’’L’ Equilibrium properties are 
based on curvature of the 

surfactant film 
(or packing of surfactants)
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Experiments : How to make micelles grow ?

1. Add cosurfactant as in CPCl/Hexanol/water (Porte)
2. Add salt (to screen electrostatics) as in CTAB/KBr (Lequeux, Candau)
3. Add strongly binding counterions Rehage, Hoffmann and others
4. …. Gemini surfactant (In, Zana)

Cationic-anionic mixtures (Kaler)

COO

OH

-
Salicylate S

O
O

O

H3C -Tosylate

Salicilate etc… are not simple salt : they are incorporated to the body of the micelles
(Estimation from the effective charge per unit lenth : 90 % are in the micelles)

water

Micellar core

+ -- - -+ ++ +

With strongly binding counterions

Strongly viscoelasticity in entangled state
The viscoelasticity is Maxwellian
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Illustrations of a Maxwellian behavior
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CPCl-NaSal-H2O (0.5 M NaCl)

Rehage and Hoffmann (88)

CPCl-NaSal-H2O

Viscoelasticity arises from entangled network

1. Unicity of relaxation time is explained by the combination of reptation and breaking
2. Scaling laws for viscoelastic parameters versus concentration η0 ~ c7/2 and G0 ~ c9/4

Cates Model (1987)

1 is almost always observed, 2 not always !
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2 - Rehage and Hoffmann (88)

Static viscosity

Maxwellian
behavior

Not all Maxwellian fluids are equivalent 
(shear thinning, shear tickening, or both)

Theoretical predictions (growth law, 
scaling) might not apply

There is a specificity for micelles made 
with counterions, especially for the 

dynamics of the network ?

No change of morphology
(Except from sphere to worms)
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Specificity of the strongly binding counterions
1 - With increasing counterions concentration
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Rheology of Wormlike Micelles
System investigated : CPCl, NaSal
Requirements : 1 - Fix the ratio counterion /surfactant (here 0.5)

2 - Saturate the solutions with salt (screening electrostatics)
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Scaling in agreement 
with Cates Model

Changing counterion/surfactant ratio and the agreement is less good 
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General Flow curve
Micellar system : CPCl-NaSal-H2O (0.5 M NaCl)

Experiments made at stationary state

At the stationary state, the stress shows a plateau (above γ1). The stress plateau is robust
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Transient rheology of Wormlike Micelles

Before the plateau
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Linear regime : 
in agreement with stress relaxation function

Nonlinear regime : overshoot

G0 = 240 Pa, τ = 1 s
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Transient rheology of Wormlike Micelles
At the stress plateau
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• Long-time relaxations
• Oscillations

• σM : « mechanical » stress
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General Flow Phase diagram
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Playing with concentration and temperature

critical concentration

Stress plateaus are robust
Strong analogy with phase transition

In this case : isotropic-to-nematic induced by shear
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Arguments in favor of the I-N transition (1994)
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1 - σP/G0 extrapolates at 0 for c = cI-N

2 - Kinetics at the onset of stress plateau

• The stress decrease coincides with the nucleation 
and growth of the aligned (nematic) state

• The exponent 2 is related to a one-dimension mechanism
• Strongly aligned phase is the high shear rate band
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Inconclusive !

(found in two different systems)
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The «ideal » example : CTAB/D20 (Cappelaere et al. 1997)
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• Rheology 
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New results (1) : Fisher and Callaghan (2000)

NMR measurements
Does the highly birefringent band correspond to a high shear rate band ?

Micellar system : CTAB-D2O

Proportion of nematic phase

The agreement between SANS
and NMR is excellent

Velocity profil e Birefringent band

The highly birefrigent phase is 
not the high shear rate band
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New results (2) : Lerouge et al. (2000)

Transient flow birefringence

  
I(t) ~  sin2 φ(t)

2
sin2 2χ(t) −θ( )

  
∆n =

λφ
2πh

Flow birefringence

Εxtinction angle

φ : phase shift
χ : extinction angle
θ : angle between polarizer and V
∆n : birefringence
h : height of the Couette cell

The long-time kinetics in FB coincides precisely 
with the kinetics seen in transient rheology

Micellar system : CTAB-NaNO3

Rheology identical to CPCl-NaSal

Appearence 
of a thin band

×

  

~  exp −
t
τ
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Evidence of multibanded flow / the stress remains constant

Transient birefringence

Short time Long time

multibandsOne band

inner wall

outer wallouter wall

inner wall

Final bands are 100 µm broad and not stationary
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conclusions
1. In entangled state, wormlike micelles are Maxwellian fluids
2. The nonlinear rheology of wormlike micelles show stress plateaus
3. Stress plateaus are associated to shear banding (flow birefringence)
4. The picture of an isotropic-to-nematic transition is not appropriate
5. A description in terms of a mechanical instability related to

the existence of a non monotonic constitutive equation is plausible

Possible routes :
Determine experimentally the non-monotonic constitutive equation 
for wormlike micelles (?)
Investigate simultaneously the temporal and spatial (at the micron length scale) 
responses of the sheared fluids using FB, NMR, scattering
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