

Outline

We use simulations to test

- 1. Classical Nucleation Theory
- 2. Ostwald's rule
- 3. Alexander-McTague rule
- 4. Turnbull's rule
- 5. The "nucleation theorem"

...and find a few surprises.

Intermezzo:

Why Ostwald would have disagreed with this talk.

I am a molecular simulator.. But Ostwald did not believe * in the reality of atoms:

"Only energy is real – believing in atoms is like worshipping idols..."

W. Ostwald

* But after Perrin's experiments on colloids, Ostwald was "converted"

Why do I defy Ostwald?

Simulations tell us things about nucleation that experiments cannot tell us...

...yet


```
What does this imply for simulation?

Consider "realistic" supercooling
(10%-20%)

Experimental nucleation rates:

O(1) cm<sup>-3</sup> s<sup>-1</sup>

Simulation:

Volume is much smaller (e.g. for one million particles): V= O(10<sup>-15</sup>) cm<sup>3</sup>

⇒Nucleation rate is O(10<sup>-15</sup>) s<sup>-1</sup>!!

⇒One event per 10<sup>15</sup> s

⇒One event per 10<sup>30</sup> MD time steps

BRUTE FORCE WON'T WORK...
```


Critical crystal nucleus of hard-sphere colloids

Ostwald's Rule(1897)

"The phase that nucleates need not be the **stable** phase, but the one that is **closest in free energy** to the parent phase..."

Stranski & Totomanov (1930's)

"The phase that nucleates is the one with the lowest nucleation barrier.."

Alexander & McTague (80)

"On basis of Landau theory, one would expect the following crystal phases to form easily from the melt:

- 1. Hexagonal (2D crystal)
- 2. Icosahedral (...)
- 3. BCC crystal

Examples:

- 1. Condensation of polar liquids
- 2. "Protein" crystallization
- 3. Crystallization of Charged colloids

Experimental observation:

Classical Nucleation Theory works well for non-polar molecules (e.g. CH₄)...

... but not for polar molecules

(e.g. CH₃CN)

Why???

"Gel" phase of dipolar hard spheres Camp, Shelley, Patey, PRL 88,115(1999)

This is NOT a stable phase of the Stockmayer fluid.

Crystallization of globular proteins

QUOTE:

"... mainly trial and error... much like prospecting for gold..."

(McPherson "Preparation and Analysis of Protein Crystals")

Ostwald VS Alexander-McTague Ostwald: When FCC is stable, nucleus should be BCC When BCC is stable, nucleus should be FCC Alexander-McTague When FCC is stable, nucleus should be BCC When BCC is stable, nucleus should be BCC When BCC is stable,nucleus should also be BCC

COMPARISON WITH EXPERIMENTS

AND

TESTING CLASSICAL NUCLEATION THEORY

TEST CASE

CRYSTAL NUCLEATION of COLLOIDAL HARD SPHERES

WHY THIS SYSTEM?

- 1. We know "everything" about the equilibrium properties of hard spheres.
- 2. Suspensions of uncharged *silica* or *PMMA* colloids really behave like hardsphere systems
- 3. There is experimental information on hard-sphere nucleation.(Ackerson & Schaetzel, Harland & van Megen:on earth. Cheng, Zhu, Chaikin et al.: in µ-gravity)

BEST FIT to Classical Nucleation Theory

SIMULATIONS:

Supersaturated: $\gamma_{eff} \approx 0.72 \ kT/\sigma^2$

At coexistence: $\gamma \approx 0.62 \text{ kT/}\sigma^2$

Experiments: $\gamma \approx 0.5 \text{ kT/}\sigma^2$

Some disagreement with CNT and with experimental estimates.

$$\Delta G^* \sim \gamma^3$$

Experiments underestimate barrier height by a factor 3!

But remember, the nucleation rate is proportional to

 $exp[-16\pi\gamma^3/(3\rho^2\Delta\mu^2kT)]$

But wait, things get even worse...

There's no success like failure...
(Bob Dylan)

A surprise:

THE EFFECT OF POLYDISPERSITY

What does this imply for the behavior of the nucleation barrier?

 $\Delta G^* = (16 \pi/3) \gamma^3/(\rho \Delta \mu)^2$

Two "predictions":

- 1. The barrier decreases
- 2. The barrier increases...

Prediction 1

Use Turnbull's rule to estimate surface free energies (γ) :

$$\gamma \approx 0.3 \ \Delta h/v^{2/3}$$

Where Δh is the enthalpy of fusion per particle, and v is the volume per particle (in the crystal)

According to Turnbull, γ should go through zero, and hence the nucleation barrier

$$\Delta G^* = (16 \pi/3) \gamma^3/(\rho \Delta \mu)^2$$

should vanish for polydispersities around 9%

Prediction 2

The "nucleation theorem" (Kashiev, Oxtoby, Viisanen, Strey, Reiss…) establishes a relation between barrier height and nucleus size:

$$\frac{\partial \Delta G}{\partial \mu} = -n^*$$

Where n* is the excess number of particles in the critical nucleus

Hence: When the number density of the critical nucleus is equal to that of the supersaturated liquid, then: $\frac{\partial \Delta G}{\partial \mu} = 0$

What do the simulations say???

The simulations suggest that γ increases with $|\Delta \mu|$, e.g.:

$$\Delta G^* = \frac{16\pi\gamma_0^3 (1 + a\Delta\mu)^3}{3\rho\Delta\mu^2}$$

SUMMARY:

- To understand Nucleation, we need to study the Critical Nucleus.
- The structure of the critical nucleus is often NOT as predicted by CNT
- We find that the barrier height also differs from the CNT predictions...
- ...and the rates disagree with the analysis of the available experiments

In short: we need better experiments and better theories....