

Richard Graham, Alexei Likhtman, Tom McLeish, Oliver Harlen and Scott Milner.

April 2002

Acknowledgement:BP Amoco

www.irc.leeds.ac.uk/~phyrsg/

Outline

- Overview of derivation methods
- •Introduction to Leeds model
- Method of solution
- Model parameters
- •Comparison with experimental data
 - -Shear transients
 - -Steady state in extension
- •Summary
- Questions

Contour length fluctuations

- •Easy to add to Langevin equation, in principle.
- •Solution to system becomes very difficult!
- •Modify reptation term to obtain an approximate treatment which agrees with the linear theory at low rates.

Derived reptation term
$$D\left(\frac{\partial}{\partial s} + \frac{\partial}{\partial s'}\right)^{2} \left(\mathbf{f} - \mathbf{f}_{eq}\right) \mapsto \left(\frac{\partial}{\partial s} + \frac{\partial}{\partial s'}\right) D_{CLF}(s, s') \left(\frac{\partial}{\partial s} + \frac{\partial}{\partial s'}\right) \left(\mathbf{f} - \mathbf{f}_{eq}\right)$$

•Choose a form for $D_{\text{CLF}}(s,s')$ which agrees with the linear theory for a wide range of values of Z.

Summary

- •We have derived a molecularly based non-linear constitutive model starting from a Langevin equation for the local dynamics of a chain in a tube.
- •The model has no shear stress maximum for any separation of τ_{rept} and τ_{Power} .
- •Taking most of the model parameters from linear rheology gives agreement with experimental data subject to a shift in Rouse time.
- •The required Rouse shift is the same when the molecular weight, the polymer species and the non-linear flow geometry are changed!!!!!! (For the data modeled so far.)
- •For solutions G'' suggests a larger value for Cn than expected whereas lowering Cn improves the agreement with high rates at large strains.

Current questions

Other measurements

- •What about damping function and other shear histories (double step etc)?
- •Will the model capture behaviour of other molecular probes (SANS, dielectric, NMR)?

Issues with current comparisons

- •What is the reason for the need to shift the Rouse time and why do the data suggest a consistent change?
- •Under which circumstances are the closure approximations valid? can we improve them?
- •Why does the model over-predict steady state shear stress? can this be rectified?
- •Why does G" for solutions suggest such a large value for Cv?