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Stretching CCR model
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under deformation.
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Chain diffusion

alongthe tube
Tube hops dueto CCR ‘ (reptation).

Rouse dhain retraction
along the tube.

R(st+Ab) =At_+k.R +

R(s,t)=Space arve equation of chain contour parameterised by s.

Tube tangent correlation
function

Stresstensor
Single chain structure factor
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Steady state in simple shear
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Shea rate YT,

Contour length fluctuations

*Easy to add to Langevin eguation, in principle.
Solution to system becomes very difficult!

*Modify reptation term to oltain an approximate tregment which agrees with the
linea theory at low rates.

’ Derived reptation term‘ ’Approximate CLFterm‘
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*Choose aform for D¢ (s,S) which agrees with the linea theory for awide
range of values of Z.
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Tangent correlation function
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NO CCR
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NO CLF - pure rertation

Procedure for obtaining model
parameters

Require:

-Entanglement mass M, Obtained from fitting

linea theory of
Likhtman and McLeish

-Rouse time of an entanglement segment, 1. [0 G adG”

-Entanglement modulus, G,

-Congtraint release parameter, Cv

Linea rheology of solutions giggests Cv~2-5.
Non-linear seady shea predictionsimproved
when Cv=0.1
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Comparison with data

Shear of monodisperse linear entangled PB solution. (Menezes & Graessley)
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No further parameter fitting
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Steady state extension data
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Summary

*We have derived a moleaularly based non-linear congtitutive model
starting from a Langevin equation for the local dynamics of achainin a
tube.

*The model hasno shea stressmaximum for any separation of t,,,, and

rept
TRouser

*Taking most of the model parameters from linea rheology gives
agreement with experimental data subjed to a shift in Rouse time.

*Therequired Rouse shift isthe same when the moleaular weight, the

(For the datamodeled so far.)

For solutions G’ suggests alarger value for Cn than expeded whereas
lowering Cn improves the agreement with high rates at large strains.
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Current questions
Other measurements

*What about damping function and other shea histories (double step
etc)?

*Will the model cgpture behaviour of other moleaular probes (SANS,
dieledric, NMR)?

Issueswith current comparisons

*What is the reason for the need to shift the Rouse time and why do
the data suggest a onsistent change?

*Under which circumstances are the dosure gproximations valid? -
can we improve them?

*Why does the model over-predict sealy state shear stress? - can this
be redified?

*Why does G” for solutions suggest such alarge value for Cv?
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